Advanced NDT to Monitor Friction Stir Welding

Gerd DOBMANN

Chair of NDT and Quality Assurance, Saarbrücken, Germany, Gerd.Dobmann@t-online.de

Outline:

- Introduction
- Process parameters
- Monitoring of process forces
- Early detection of irregularities
- Superposition of powered ultrasound
- Benefits & Conclusion
- Acknowledgements

Friction Stir Welding

1991 developed by TWI

Process in Detail

Classic TWI 5651

Tri-flute[™]

Trivex™

Stir pins according to TWI

Process Parameters

Process forces

Fraunhofer

Material movement by rotation and translation

Material movement visualized by 3D-CT according Dickerson 2003

AIMg3Mn-AIMg3Mn FSW with nugget, TMAZ, HAZ and BM at RS and AS

🗾 Fraunhofer

Joint Line Remnant JLR, Oxid-Hydroxid Particles

Process monitoring and control

Quality control with SPC (Statistical Process Control)	Classical process monitoring and control
with quality characteristics (dimensions, defects, material properties)	with process characteristics (force, pressure, temperature, etc.)
Off-line, ex-line	On-line, in-line
Random samples, discontinuous	100%, continuous
Observation of Quality degradation	Observation of Process disturbances
-> Process disturbances (delayed)-> Control cycle	-> Quality degradation ?-> Control cycle
	ality control
UNIVERSITÄT DES SAARLANDES	LK Frau

Process monitoring and control

Wrought Al-alloy AA5454 (300x125 mm²) with a thickness of 3.5 mm were friction stir welded.

Milling machine from the type Deckel Maho DMU80T, DMG Germany.

Tool shoulder possesses a 14 mm diameter and a M3.5 pin and was tilted by 2° during the process.

The ratio of the welding parameters, feed rate and rotational speed per revolution, FPR, ranges from 50 μ m/R to 200 μ m/R.

The machine is equipped with a force measurement system which allows recording the welding forces in x-, y-, and z-direction emerging during the welding process.

For microscopic investigations the cuts of the welded sheets were etched in hydrofluoric acid for 10 s.

Force measurement by piezoelectric sensors according to Kistler

ZigZag indications

Periodic welding forces

🗾 Fraunhofer

\bigcirc Feed per revolution and groove spacing P_{sm}

Pattern recognition in the spectrogram of a sound weld

Continuously high amplitudes in the F x -frequency range lower than that of tool rotation (contrary to the STFT of F y). Continuously high amplitudes in the frequency range of the tool rotation frequency. Continuously high amplitudes in the frequency range of the harmonics.

Trequency. amplitudes at 100 Hz, independent of tool retation fraunhofer

Superposition of high powered (20 kHz, 25-40µm, 3kW) ultrasound, 500N

Benefit & conclusion – more than a factor 2 in lifetime

🖉 Fraunhofer

- The FSW-Process can be online monitored due to Force-Measurement and –Analysis
- The early development of welding irregularities can be detected
- The Process can be controlled
- The superposition of High-Powered Ultrasound is enhancing the welding quality in terms of fatigue life time with at least a factor two.

- I have to acknowledge the PhD-thesis of Tobias JENE
- The fruitful and longtime cooperation with the Institute of Materials Science and Engineering, WKK, Technical University Kaiserslautern, Prof. Dietmar EIFLER and Prof. Guntram WAGNER

