Automotive Industry and MEMS Technology

Yutaka NONOMURA Principal Researcher System & Electronics Engineering Dept. III TOYOTA CENTRAL R&D LABS., Inc.

1. TOYOTA CRDL, INC

Outline

- **1. TOYOTA CRDL, INC**
- 2. Sensing Technology for Automobiles

3. Sensors for Automobiles

- 3.1 Combustion Pressure Sensor
- 3.2 Quartz Yaw Rate Sensor
- 3.3 3-Axis Accelerometer
- 3.4 Optical Device

4. Sensors for Robots

- 4.1 Robot Use of Automotive Sensors 4.2 Tactile Sensor with Nerve Network
- 5. Summary

TOYOTA CRDL., INC.

Introduction of Toyota Central Research and Development Laboratories, Incorporated

→ TOYOTA CRDL., INC.

Copyright © 2014 Toyota Central R&D Labs., Inc.

Company Outline

- Established :November 1960 :Nagakute, Aichi, Japan Location Capital :3 billion yen (30million US\$) Number of Employees: 1,035
 - Ground Area
- Floor Space
- :About 300,000 m² :About 98,000 m²

(March 2014)

Copyright © 2011 Toyota Central R&D Labs., Inc.

Stockholder Companies & **Technical Collaboration Contractor Companies**

Stockholder Companies

- Toyota Industries Corporation
- Toyota Motor Corporation
- Aichi Steel Corporation
- JTEKT Corporation
- Tovota Auto Body Co., Int.
- Tovota Tsusho Corporation
- Aisin Seiki Co., Ltd.
- Denso Corporation
- Toyota Boshoku Corporation 9 companies

From automatic loom to automobile

Technical Collaboration Contractor Companies

- Tovota Motor East Japan, Inc.
- **Blue light emitting** Toyoda Gosei Co., Ltd. diode
- Hino Motors, Ltd. Truck
- Daihatsu Motor Co., Ltd.
 - Light automobile Other 39 companies

(March 2014)

Copyright © 2011 Toyota Central R&D Labs., Inc.

Technological History 1

1960: Toyota CRDL, Inc. established in Nagoya City

- 1972: Thermo-Reactive Deposition and Diffusion Process (TRD Process)
- 1975: Exhaust Gas Purification System. Oxygen Sensor 5

1980: Expanded and Transferred to Nagakute

1987: Sound Quality of Car Interior Engine Noise

1997: Reaction Control Technology under Shear Flow

Insulated Gate Bipolar Transistor (IGBT) and

The first feedback system with an electric sense

1990: Nvlon-Clav Hybrid (NCH)

(Rubber Recycling),

Diode for Hybrid Vehicles

●1982: T-10 Robot

Exhaust Gas

catalyst

Purification System

T-10 Robot

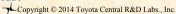
Technological History 2

2000: Toyota Unveils Cyber Humanoid Body for Research of Accident Injuries (THUMS®), GUM METAL (Published in Science 2003)

2001: Visible-Light Active Photocatalyst (Published in Science 2001)

Photocatalys

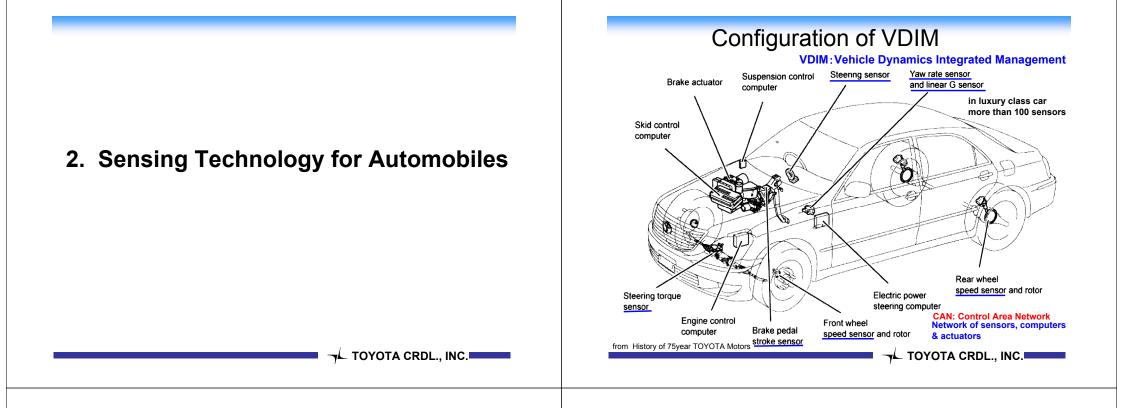
Visible-Light Active



ertial Force Sensing System and Robot using the system

Copyright © 2014 Toyota Central R&D Labs., Inc.

Pedestrian Detection for Night View System


2002: An Ordered Mesoporous Organosilica Hybrid Material with a Crystal-Like Wall Structure (Published in Nature 2002) 2004:Ultrahigh-Quality Silicon Carbide Single Crystals

> (Published in Nature 2004). High Performance Lead-free Piezoelectric Materials (Published in Nature 2004). **DLC-Si Coating Process**

2005: Inertial Force Sensing System for Mobility Robots

2009: Pedestrian Detection for Night View System 2010: Noble Metal Sintering Suppression Technology in Exhaust Catalyst

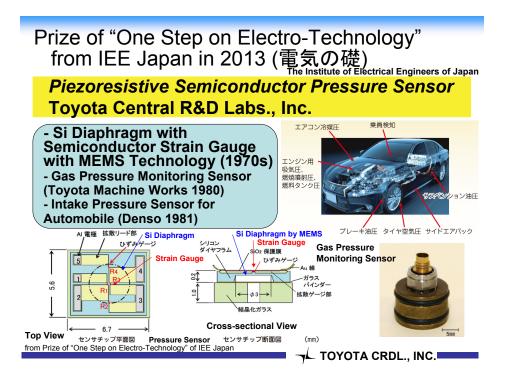
2011: Solar Fuels -CO₂ Photoconversion into Organic Compounds

Sensor Application Comparison

	Automobile	Home Electronics	Industry	Airplane
Accuracy	1 to 5 %	5 to 20 %	0.1 to 1 %	0.1 to 1%
Temperature Range	-40 to 120 ℃	–10 to 50 °C	0 to 60 °C	–555 to 70 ℃
Vibration	2 to 25 G	1 to 5 G	0 to 5 G	0.5 to 10 G
Power Fluctuation	+/- 50 %	+/-10%6	+/-10%	+/-10 %
EMC	Large	Small	Medium	Small
Ambient	Water, Salt, Dirt, Erosion	Water	Water, Oil, Erosion	Water, Salt
Sensor Cost	1 to 10 \$	1 to 10 \$	10 to 100 \$	100 to 1000 \$
Whole Cost	0.01 to 0.1 M\$	0.001 to 0.01 M\$	0.001 to 1 M\$	0.1 to 100 M\$
Cost Ratio	10 ² to 10 ⁵	10 ¹ to 10 ⁴	10 ¹ to 10 ⁵	10 ² to 10 ⁵
Mass Production	Good	Good	Poor	Poor
Maintenance	Public, Professional	Public, Professional	Professional	Professional

EMC: electromagnetic compatibility

Accuracy: Middle Working range: Wide Life: Long High stability High reliability Low cost by mass production


🔸 TOYOTA CRDL., INC.

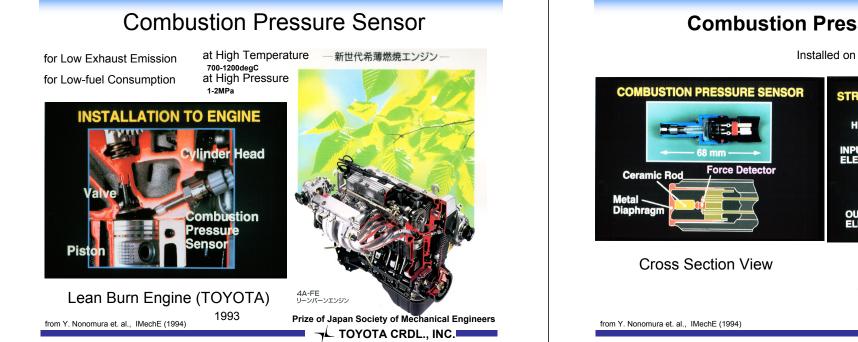
Kind of Automotive Sensor

Temperature	Water, Oil, Intake, Exhaust air, Fuel, Cabin		
Gas	Oxygen, Lean, NO _x , HC, H ₂		
Pressure	Intake air, Air flow, Combustion, Supercharging, Brake, Tire, Compressor		
Position	Fuel level, Cam, Vehicle height, Seat		
Angle	Crankshaft, rotation, Throttle, Steering, Direction		
Speed	Engine, Vehicle, Transmission, Wheel		
Angular rate	Yaw rate, Rollover		
Acceleration	Airbag, Chassis, Suspension		
Force, Load	Brake pedal, Steering torque, Loading		
Vibration	Knocking		
Light, Electric wave, Sound	Laser, Microwave, Visible light, IR light, Solar irradiation, Headlight, Voice, Ultrasound		
Others	Glow plug, Particle, Rain drop, Humidity, Antenna, Fingerprint, Current		

Inner sensor: Pressure, Acceleration, Angular rate (very important to control vehicle) Outer sensor: Sonar, Rader, Vision (expecting advanced safety)

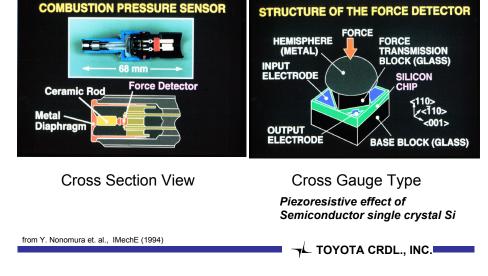
🤟 TOYOTA CRDL., INC.

Automotive Sensor & MEMS Technology

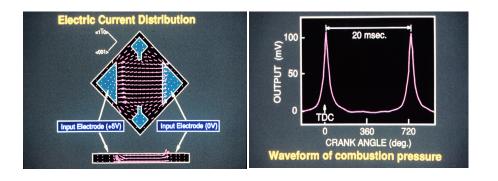

1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015

Pressure Sensor		Combustion Sensor	Yaw Rate Sensor				
Bulk Gauge	Diffusion Gauge	Cross Gauge ★	*				
★ ★ ★ Quartz Yaw Rate Sensor							
Gas Pressure Sensor Tactile Sensor							
Air Conditioner Sensor 🛨							
	netic IC Sensor	~	Magnetic Impedance	Sensor tner Robots			
★ On Board	A	cceleration Sensor	Jerk S				
Description today		ag Sensor ★ 🛛 Chassis ★ SOI ★ 🛛 3G		Sensor			
Element Shap		ensor	SOI 3D F	Scanner Process			
Wafer P		Poly Si, Film	Actuator				
Bulk Micro Machining							
6							
Integrated Micro Machining							
	•	Aicro Machining					
	•	0					
	•	Aicro Machining urface Micro Ma	achining				
	•	Aicro Machining urface Micro Ma SOI Mi	achining cro Machining	ling			
	•	Aicro Machining urface Micro Ma SOI Mi	achining	ning			
	•	Aicro Machining urface Micro Ma SOI Mi	achining cro Machining	ning			
	•	Aicro Machining urface Micro Ma SOI Mi	achining cro Machining	0			

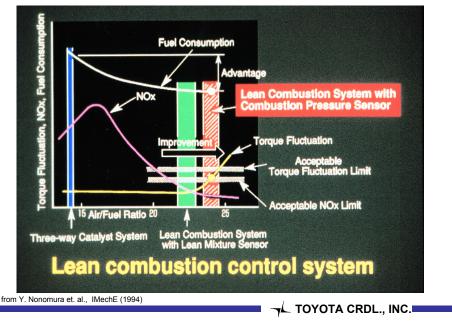
3. Sensors for Automobiles

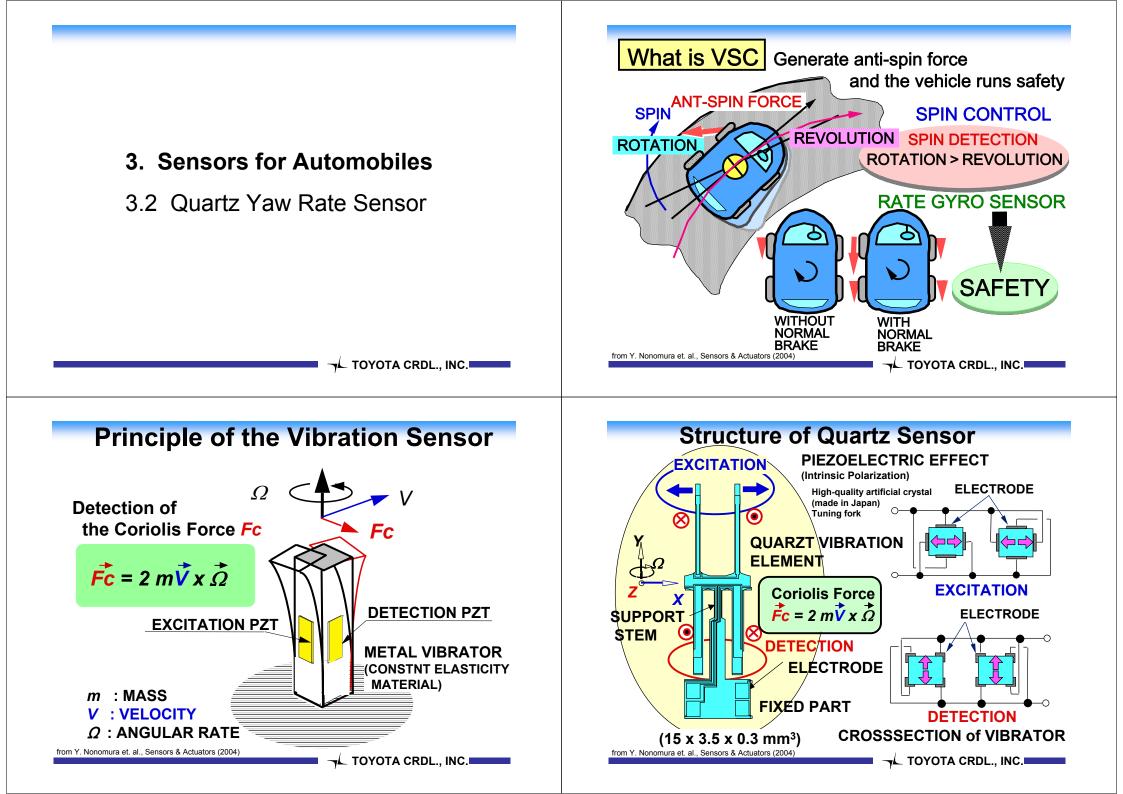

3.1 Combustion Pressure Sensor

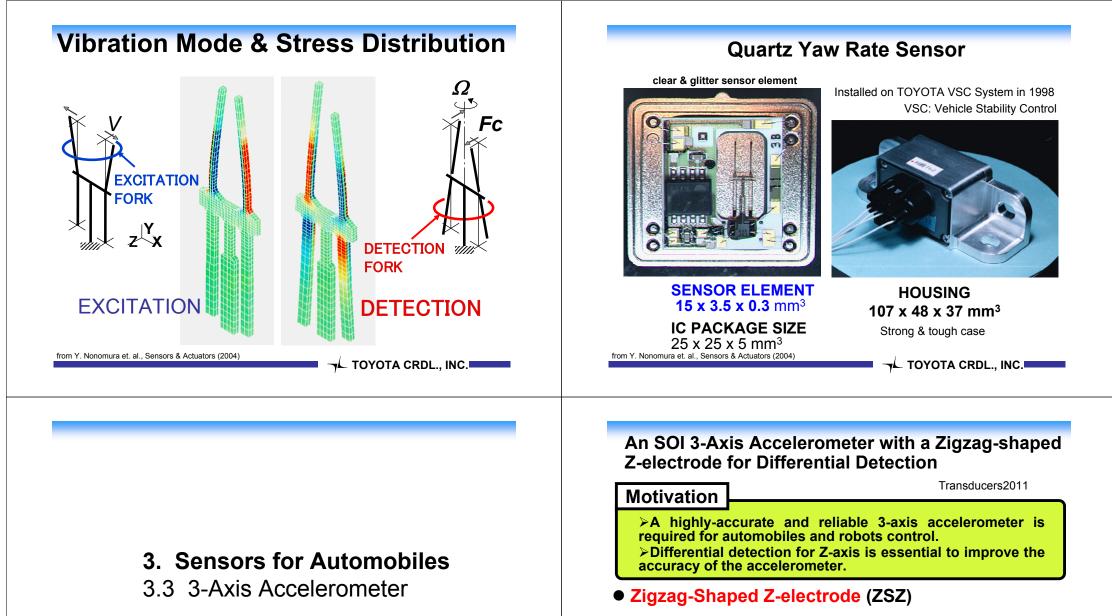
🛛 🤟 TOYOTA CRDL., INC.



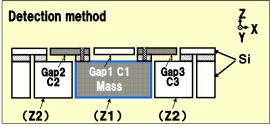
Combustion Pressure Sensor

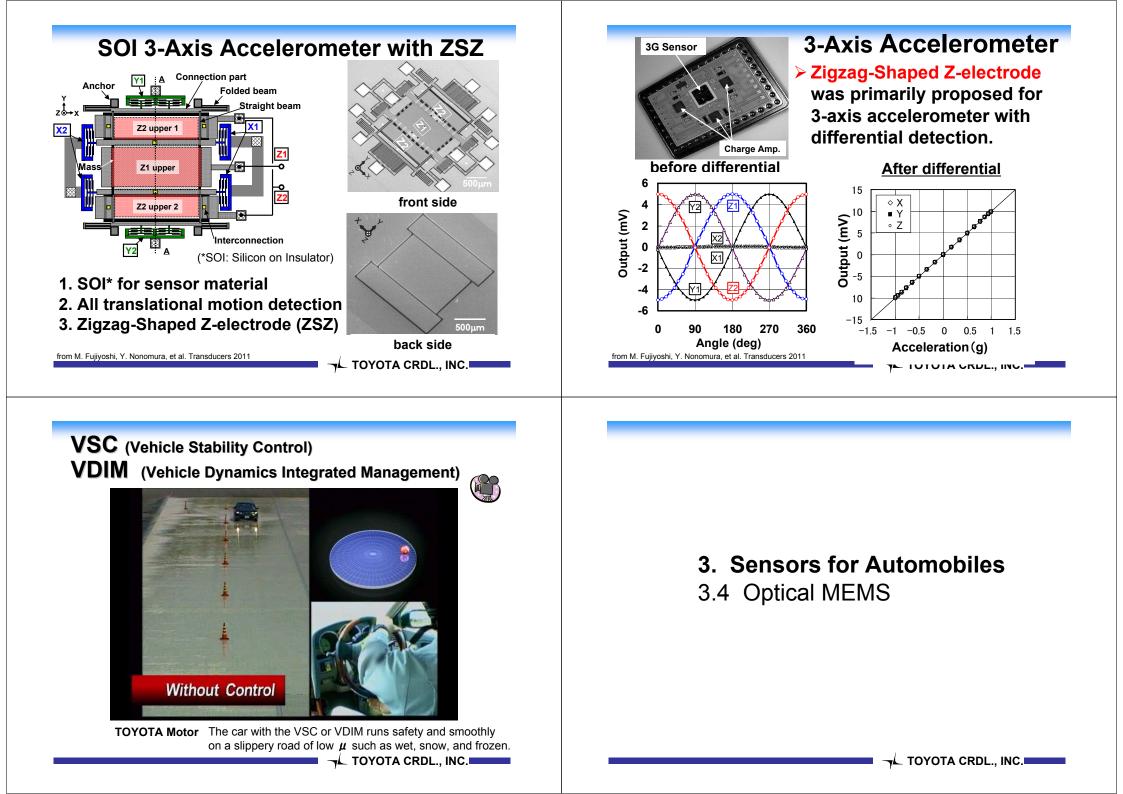

Installed on TOYOTA Lean Burn Engine in 1993

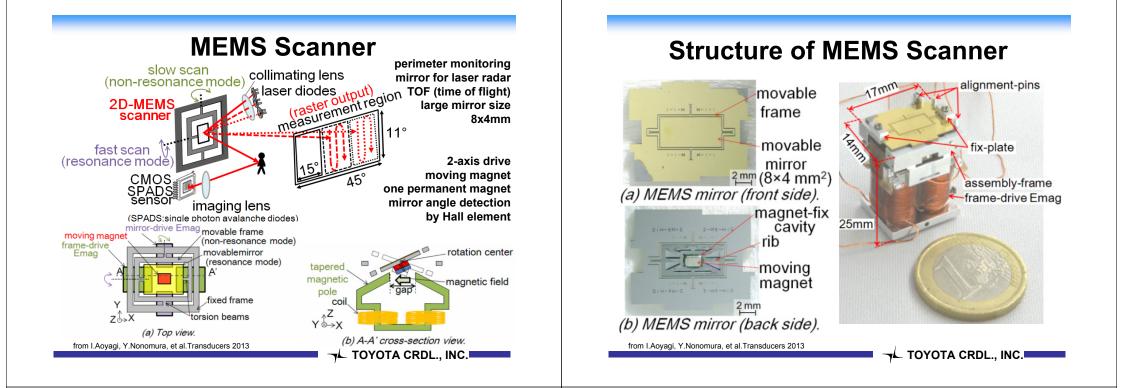


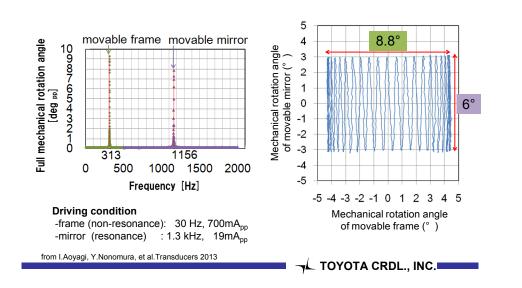

Combustion Pressure Sensor

Combustion Pressure Sensor



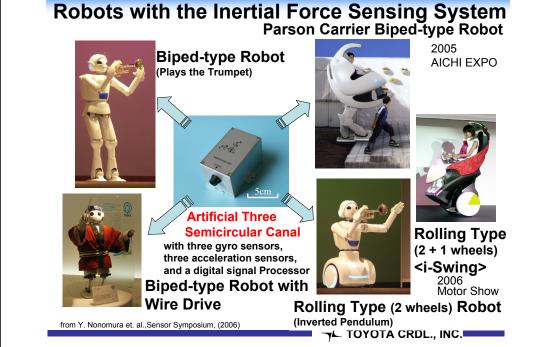

• Differential detection for Z-axis is achieved with only two Si layers.


•Gap distances 1-3 are equal by the uniformity of the oxide layer.


from M. Fujiyoshi, Y. Nonomura, et al. Transducers 2011

Zigzag-Shaped Z-electrode (ZSZ)

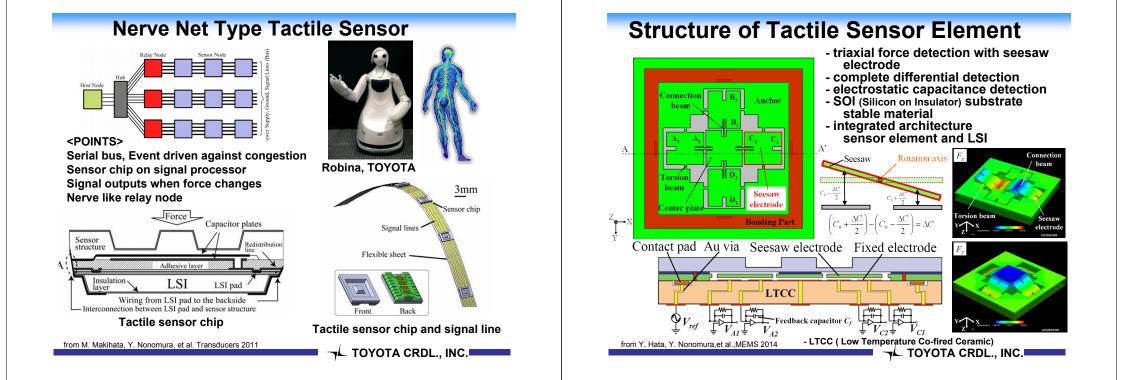
Characteristics of MEMS Scanner

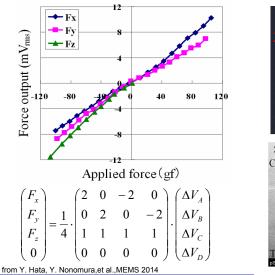

4. Sensors for Robots

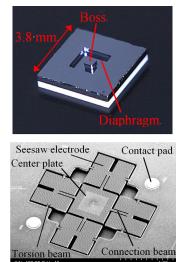
4.1 Robot Use of Automotive Sensors

Toyota Group has a dream to create a new world and style of life with robots as partners.

🦡 TOYOTA CRDL., INC.


Role of the Artificial Three Semicircular Canal




4. Sensors for Robots

4.2 Tactile Sensor with Nerve Network

Characteristic of Sensor Element

🚽 TOYOTA CRDL., INC.💻

5. Summary

➢ The sensors for the automobiles have been advanced with the MEMS technology.

New sensors and devices are created with new MEMS technology, and that will continue to grow.

> The needs and applications of the sensors and devices are expanding.

The sensors and devices of the automobiles should be integrated with LSI for high performance and communication systems.