NH_3 -DeNO_x Activity of Composite Catalysts [Meso-Ce_xZr_{1-x}O₂ + Micro-Fe-Beta]

A.Y. Stakheev*, D.A. Bokarev and A.I. Mytareva N.D. Zelinsky Institute of Organic Chemistry, Moscow, Russia e-mail: st@ioc.ac.ru

Sourav Khan and Parasuraman Selvam* NCCR & Department of Chemistry, IIT-Madras, Chennai, India a mail: selven Qiim.ac.in New Industry Creation Hatchery Center 東北大学末来科学技術共同研究センター

NICHE

Also at: Tohoku University, Japan & University of Western Sydney, Australia

Comparison of $DeNO_x$ performance of individual components $(Ce_{0.67}Zr_{0.33}O_2 \text{ and Fe-Beta})$, and composite catalyst $[Ce_{0.67}Zr_{0.33}O_2 + Fe-Beta]$.

Stakheev et al., Top. Catal., 56 (2013) 427.

Evaporation Induced Self-Assembly (EISA) Method

(Schematic representation of the Synthesis Procedure of Ordered Mesoporous Ce_{1-x}Zr_xO₂ Solid Solution)

Yuan et al., J. Phys. Chem. C, 2009, 113, 4117–4124.

Structural and textural properties of mesostructured CeO₂ and Ce_{1-x}Zr_xO₂

Materials	a ₀ (Å)	d ₁₀₀ (nm)	t (nm)	S _{BET} (m ² g ⁻¹)	D (nm)	V _P (cm ³ g ⁻¹)
CeO ₂	5.38	7.94	7.2	100.1	3.1	0.29
Ce _{0.75} Zr _{0.25} O ₂	5.36	10.96	7.5	76.7	4.1	0.09
Ce _{0.50} Zr _{0.50} O ₂	5.29	9.09	7.6	70.6	3.7	0.08
Ce _{0.25} Zr _{0.75} O ₂	5.19	5.39	7.8	58.2	3.6	0.08

S. Khan, M.Tech. Dissertation, IIT-Madras, 2011.

 NH_3 -De NO_x performance of Fe-Beta zeolite and the composite [$Ce_xZr_{(1-x)}O_2$ + Fe-Beta]. NO_x conversion. Overall flow rate: 300 ml/min. Catalyst load: 0.160 g (Fe-Beta load: 0.04 g).

Temperature, °C

 $\label{eq:2.1} \begin{array}{l} NH_3\text{-}DeNO_x \ performance \ of \ Fe-Beta \ zeolite \ and \ the \ composite \ [Ce_xZr_{(1-x)}O_2 + Fe-Beta].\\ Outlet \ NH_3 \ concentration. \ Overall \ flow \ rate: \ 300 \ ml/min.\\ Catalyst \ load: \ 0.160 \ g \ (Fe-Beta \ load: \ 0.04 \ g). \end{array}$

Reaction product distribution for Fe-Beta and $[Ce_x Zr_{(1-x)}O_2+Fe-Beta]$ composite catalysts.

(a)NO₂ concentration, ppm (b)N₂O concentration, ppm

500

N₂O concentration, ppm

Mesoporous Silica-based Catalysts for the Reduction of NO by CO: Effect of Noble Metals and Catalysts Preparation Methods

Vilas M. Ravat Department of Chemistry, IIT-Bombay, Mumbai, India

Preeti Aghalayam Department of Chemical Engineering, IIT-Bombay, Mumbai, India

Parasuraman Selvam* NCCR & Department of Chemistry, IIT-Madras, Chennai, India e-mail: selvam@litm.ac.in

NICHE

New Industry Creation Hatchery Center 東北大学末来科学技術共同研究センター

National Centre for Catalysis Research

Also at: Tohoku University, Japan & University of Western Sydney, Australia

Catalyst	Surface area	Metal content	Metal Size
	(m^{2}/g)	(%)	(nm)
PdMCM-48	1007	3.90	2.80
PdMCM-48	986	3.85	8.30
PdMCM-48	950	3.75	15.9
RhMCM-48	1021	3.98	
RuMCM-48	924	3.95	15.7
PtMCM-48	950	3.90	13.0
PdMCM-41	870	4.00	3.10
PdSBA-3	805	3.90	4.30

Effect of catalyst preparation method

Catalyst	Pd size (nm)	Pd content (wt %)	NO con 25%	version 100%
PdMCM-48	2.8	3.90	190 °C	235 °C
PdMCM-48 (DP)	8.3	3.85	210 °C	265 °C
PdMCM-48 (IMP)	15.9	3.75	235 °C	280 °C

Effect of reaction temperature on the reduction of NO by CO reaction over different mesoporous supports :

[-▼-] PdMCM-48 [-▲-] PdMCM-41 [-Δ-] PdSBA-3.

- PdMCM-48 in effective among the mesoporous supports.
- All Pd containing MFI structure shows near about same performance.

Comparisons of Noble Metal Effect on MCM-48

RhMCM-48 is active at low temp. PdMCM-48 and RuMCM-48 show better activity than PtMCM-41

Catalysts	Size	NO conv	NO conversion		
	nm	25% 1	00%		
PdMCM-48	2.8	190 °C	235 °C		
RhMCM-48	1.9	145 °C	185 °C		
RuMCM-48	15.7	185 °C	220 °C		
PtMCM-48	13.0	225 °C	260 °C		

Catalytic performances of different noble metal supported $[-\blacktriangle -]$ RhMCM-48, $[-\bigtriangledown -]$ RuMCM-48, $[-\bigtriangleup -]$ PdMCM-48, and $[-\nabla -]$ PtMCM-48 catalysts.

DST / CSIR / BRNS / IOCL / SHELL / P & G / GRANULES <u>ACKNOWLEDGEMENT</u> TU, DCU, ZIOC, UQ & UWS

Thank You!