Global and Local Innovations for

Next Generation of Vehicles

Masayoshi Tomizuka Cheyl and John Neerhout, Jr. Distinguished Professor Department of Mechanical Engineering University of California, Berkeley tomizuka@me.berkeley.edu

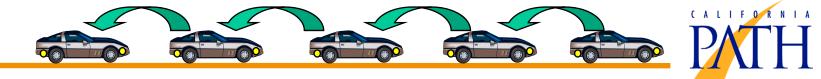
> *Tohoku University October 27, 2015*

Presentation Outline

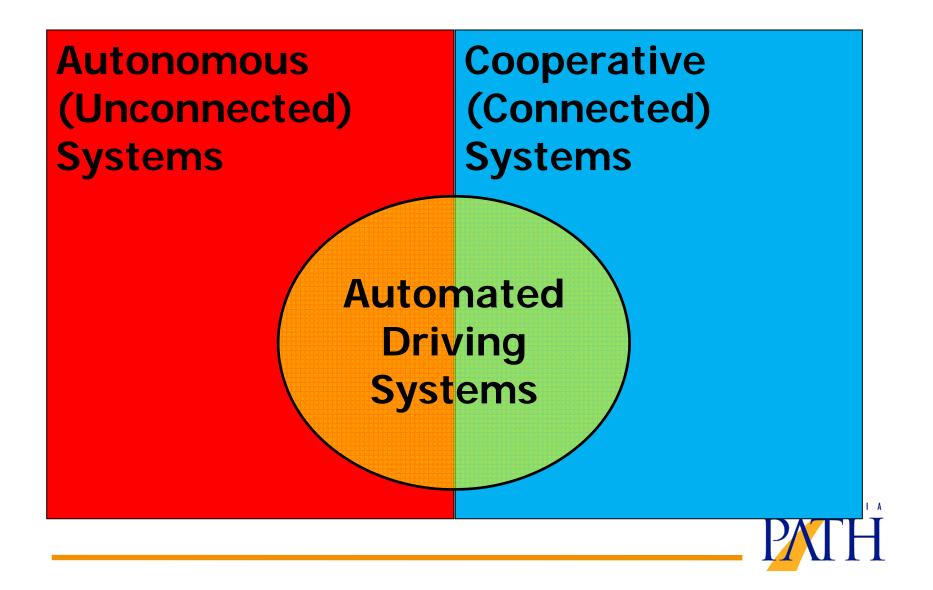
- Trends in Automated Vehicles (AV)
 - Background and Definitions
 - Current Status
- Research Activities at UC Berkeley
 - Selective Projects at UC Berkeley
- Look Ahead
 - Expectations for the Decade Ahead
 - Challenges
- Summary Remarks

History of Vehicle Automation

- 1930s GM Futurama Exhibition
- 1960s 1980s
 - Various R&D in US, Japan, and Europe
- 1990s
 - US National Automated Highway Consortium
 - Continuing R&D in EU and Japan
- 2000s
 - US DARPA Grand Challenges
 - Relatively more intensive R&D globally
- 2010s
 - Google "Driver-less Cars"
 - Significant Automaker announcements



Goals that Could be Served by Vehicle Automation


- Immediate Effects
 - Improving user safety and minimizing driving hazards
 - Providing driving comfort and convenience
 - Freeing up time and attention demanded by driving
 - Enhancing mobility options for disadvantaged users
 - Improving fuel or energy efficiency
 - Reducing transportation cost by car for individuals
- Longer-Term and System-Wide Effects:
 - Reducing traffic congestion in general
 - Reducing or redistributing vehicle user costs
 - Reducing energy use and pollutant emissions
 - Making efficient use of existing road infrastructure
 - Reducing cost of future infrastructure and equipment

Automated Platoon (1997 NAHSC Demonstrations)

Autonomous and Cooperative Vehicles

SAE J3016 - Levels of Automation Taxonomy and Definitions for to On-Road Motor Vehicle Automated Driving Systems

SAE Level	Name	Narrative Definition	Execution of Steering/ Acceleration/ Deceleration	<i>Monitoring</i> of Driving Environment	Fallback Performance of Dynamic Driving Task	System Capability (<i>Driving Modes</i>)
Human driver monitors the driving environment						
0	No Automation	the full-time performance by the human driver of all aspects of the dynamic driving task, even when enhanced by warning or intervention systems	Human driver	Human driver	Human driver	n/a
1	Driver Assistance	the <i>driving mode</i> -specific execution by a driver assistance system of either steering or acceleration/deceleration using information about the driving environment and with the expectation that the <i>human driver</i> perform all remaining aspects of the <i>dynamic driving task</i>	Human driver and system	Human driver	Human driver	Some driving modes
2	Partial Automation	the <i>driving mode</i> -specific execution by one or more driver assistance systems of both steering and acceleration/deceleration using information about the driving environment and with the expectation that the <i>human driver</i> perform all remaining aspects of the <i>dynamic driving task</i>	System	Human driver	Human driver	Some driving modes
Autor	Automated driving system ("system") monitors the driving environment					
3	Conditional Automation	the driving mode-specific performance by an automated driving system of all aspects of the dynamic driving task with the expectation that the human driver will respond appropriately to a request to intervene	System	System	Human driver	Some driving modes
4	High Automation	the <i>driving mode-specific performance</i> by an <i>automated driving system</i> of all aspects of the <i>dynamic driving task</i> , even if a <i>human driver</i> does not respond appropriately to a <i>request to intervene</i>	System	System	System	Some driving modes
5	Full Automation	the full-time performance by an <i>automated driving</i> system of all aspects of the <i>dynamic driving task</i> under all roadway and environmental conditions that can be managed by a <i>human driver</i>	System	System	System	All driving modes

Copyright 2014 SAE

Examples at Each Automation Level

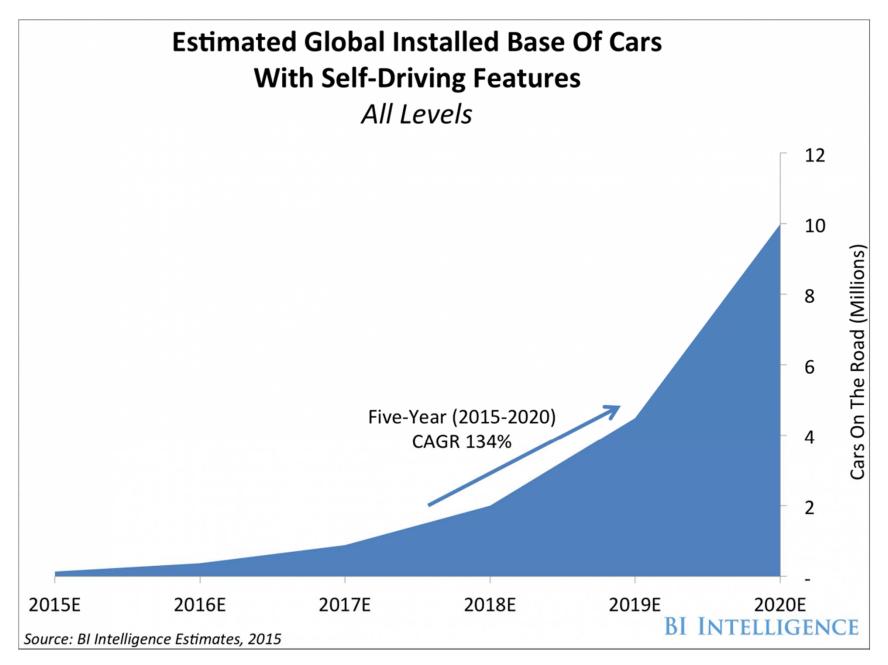
Level	Example Systems	Driver Roles
1 Driver Assistance	Adaptive Cruise Control OR Lane Keeping Assistance	Must perform other non- automated functions and monitor driving environment
2 Partial Automation	Adaptive Cruise Control AND Lane Keeping Assistance Traffic Jam Assist	Must monitor driving environment (system try to engage driver)
3 Conditional Automation	Traffic Jam Pilot Automated Parking	May read a book, text, or web surf, but be prepared to intervene when needed
4 High Automation	Highway driving pilot Closed campus driverless shuttle Driverless valet parking in garage	May sleep, and system can revert to minimum risk condition if needed
5 Full Automation	Automated taxi Car-share repositioning system	No driver needed

PATH VAA Project (Level 1) Automated Bus in Eugene Oregon

- LTD, Eugene Oregon
- 2.5 miles of single/double dedicated ROW
- One 60ft New Flyer BRT bus
- Functions:
 - Lane guidance for on dedicated BRT lane
 - Precision docking

Nissan Infiniti (Level 2) Lane Keeping + ACC

 Youtube Video (Note that driver goes to backseat at end of video, a misuse case for Level 2)


https://www.youtube.com/watch?v=zY_zqEmKV1k

Current Status - OEMs

Organization	Confirmed and Predicted Product Introduction	Predictions of Readiness for Autonomous Vehicles
Audi/VW	2016 – traffic jam assist 2014 – automated parking	Available by 2020
BMW	2014 – traffic jam assist 2014 – automated parking	Available by 2020
Bosch	2014 – traffic jam assist available for OEMs	Available by 2020
Continental		Available by 2020
Ford	2015 – fully assisted parking	
General	2017 – Super cruise	Available by 2020
Motors		
Google		Available by 2018
Honda	Valet parking by 2020 or earlier	
Mercedes-	2014 – traffic jam assist	Available by 2020
Benz		
Mobile Eye		2016 – technology ready for OEMs
Nissan	2015 – highly autonomous	Available by 2020
Tesla	2016 – highly autonomous	
Toyota	Mid 2010s – highly autonomous	
Volvo	2015 – traffic jam assist 2015 – automated parking	Zero fatality by 2020

Estimated Market Introduction

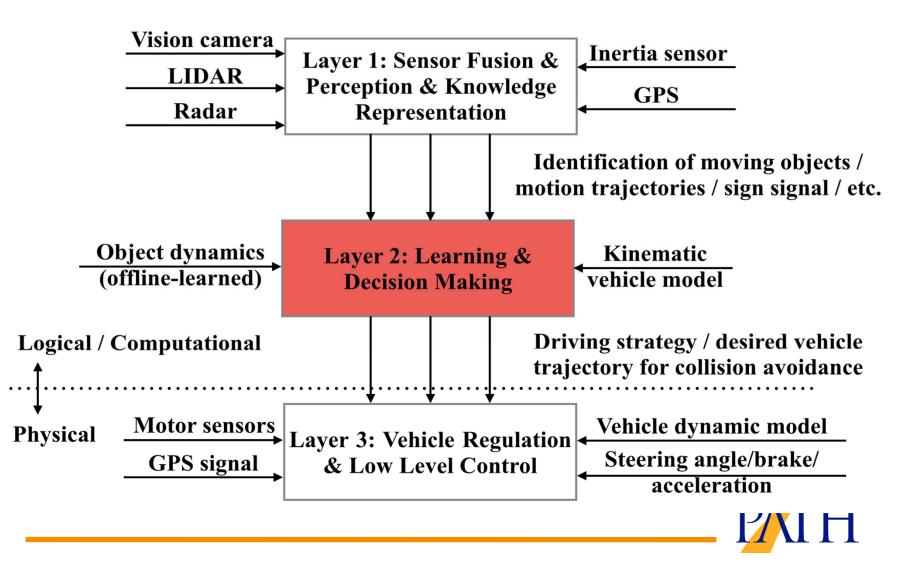
Current Status and Trends

Emerging Forces

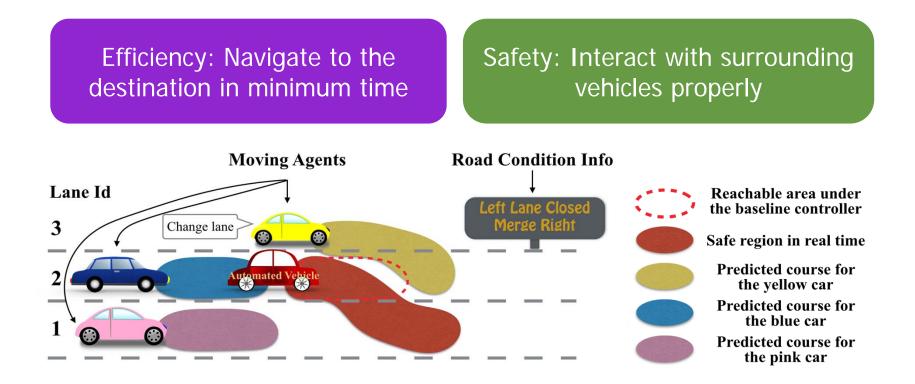
- Significant Advancements in sensing and computing technologies
- Considerable developments by high-tech industries and automakers
- Greater publicity and awareness
- Legislations following the steps

Current Trends

- Intensive research in all regions globally
- Heavy investments by auto industry
- Commercial products highly feasible within next 3-5 years


Selective Research Projects at

UC Berkeley


ROAD System for Automated Driving

- Changliu Liu and Masayoshi Tomizuka

ROAD System for Automated Driving

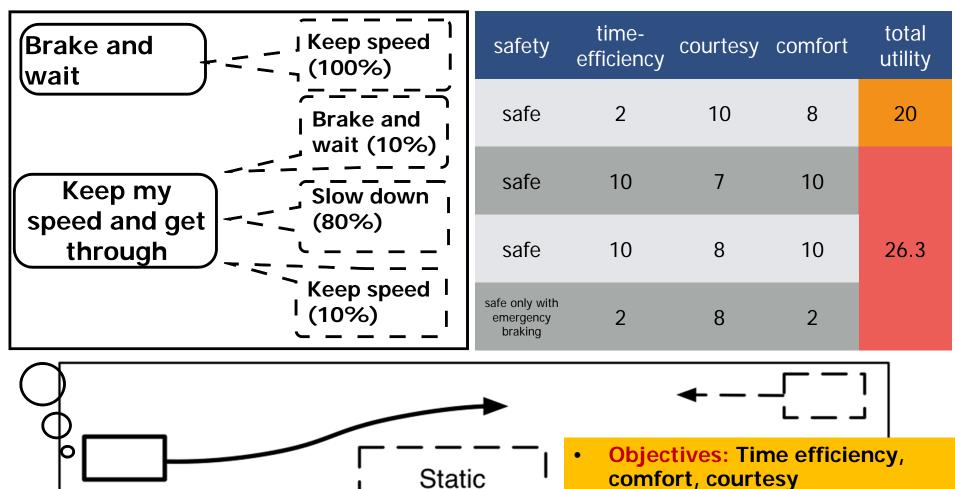
- Changliu Liu, Masayoshi Tomizuka -

- Predict the future course for each surrounding vehicle (learning and prediction);
- Find a trajectory in the safe region (decision making).

Autonomous Driving in Urban Environment Wei Zhan, C-Y Chan, and M. Tomizuka

French "Drive for You" Foundationrench "Drive

- Foundation headquartered at Mines ParisTech
- Industrial Sponsors
 - Valeo, Peugeot, Safran
- Academic Partners
 - Mines ParisTech, France
 - EPFL, Switzerland
 - Shanghai Jaio-Tung University, China
 - PATH, UC Berkeley, USA
- Innovation Lab
 - Mines ParisTech + INRIA + IFSTTAR



Driving Behaviors and Interaction

- Wei Zhan, C-Y Chan, M. Tomizuka -
- Objectives in driving
 - Time efficiency, comfort, courtesy
- Constraints in driving
 - Safety, traffic rules, obstacles, vehicle dynamics
- Reciprocal methodology
 - Problem formulation: Social interaction
 - Probability distribution subject vehicle vs. others
 - Safety: to achieve the fairly best case which will probably happen, and guarantee to survive in worst cases although they will probably not happen
 - Neither purely cooperative nor adversarial

Driving Behaviors and Interaction - Wei Zhan, C-Y Chan, M. Tomizuka -

obstacle

- Constraints: Safety, traffic rules, obstacles, dynamics
 - Methodology: Social interaction

Cooperative Systems

"Connected Vehicles" Research at PATH

PATH RFS Test Facilities

Included within this Richmond Field Station (RFS) facility is

- A test track that has been used extensively for dynamic vehicle experiments in controlled environment.
- The test track is covered by a variety of sensors and instruments, which can generate high accuracy positioning data for vehicles moving along the track.
- An Intelligent Intersection is equipped with DSRC and WiFi network links that enable the use of wireless communication links for potential testing of vehicle-to-infrastructure applications.

El Camino Real Connected Vehicles Testbed

Included within the El Camino Real are

- A 2-mile, 11-intersection stretch of El Camino Real SR-82 arterial in Palo Alto, California
- Equipped with the updated hardware and software that are compatible with IEEE 1609 and SAE J2735 and with other USDOT test beds such as one in Michigan.
- Linked security server of USDOT managed by Leidos (formerly SAIC) so that communication security protocols can be exercised.
- Signal Phase and Timing (SPaT) information
- Dedicated intersection computer to augment local computing capability
- IPv6 connectivity to backhaul
- Intersection maps as MAP broadcasts
- Use of DSRC, Wi-Fi, Bluetooth, Cellular

PATH V2X Activities

- First to deploy RSE (roadside equipment) on public Roads, Emeryville, CA, 2004
- First to publicly demonstrate VII (Vehicle-Infrastructure Integration) Concepts of Operations at ITS World Congress in San Francisco, 2005
- Build and operate VII California Test Bed, and conducts collaborative work with automakers
- Vehicle-Infrastructure Technology Affiliated Laboratory (VITAL) Consortium
 - Non-competitive joint research by members
 - Focus on use of communication technologies for safety, mobility, environment applications
 - Members include Industrial Technology Research Institute (ITRI), Taiwan and SANDEX, Japan

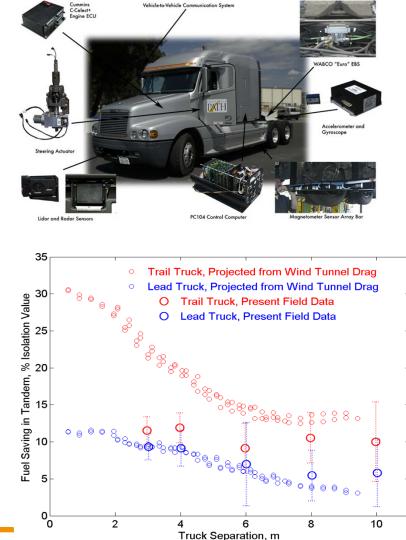
Cooperative Adaptive Cruise Control (Research at PATH in Collaboration with Nissan)

DSRC

CACC Follower

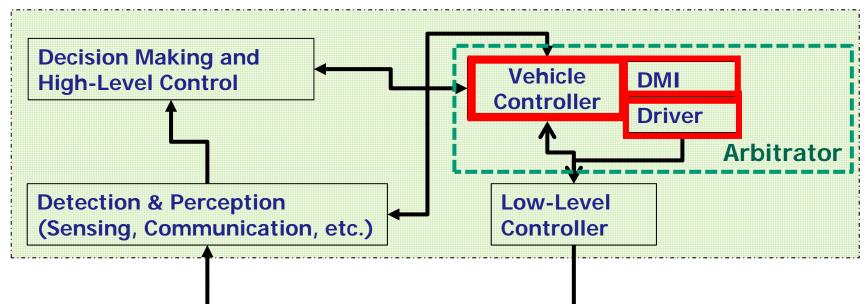
CACC Lead & ACC

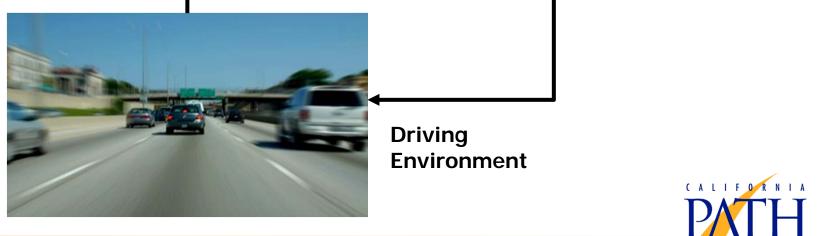
Regular Traffic


- CACC extends from Adaptive Cruise Control (ACC) with the addition of V-V communication (DSRC); 2006-2015
- 5.9 GHz DSRC, Denso WRM, 10 Hz Communication
- Potential increase in roadway efficiency without compromising safety
- Pilot collaboration research with Nissan on driver experience
 - ACC time gaps of 1.1 to 2.2 seconds
 - CACC time gaps of 0.6 to 1.1 seconds
- 2013 FHWA EARP project focus areas: traffic stream analysis, driver selection of time gaps and driving behaviors

Automated Truck Platooning - with V2V communication -

- Similar to Japan Energy ITS project (2011-2014)
- Developed and tested 2and 3- truck platoons under automatic spacing control at gaps from 3 m to 10 m
- Estimated Fuel savings of 10 -15% measured


Challenges



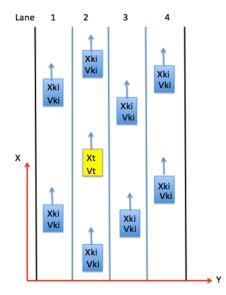
- What must be overcome?
 - Technical
 - > Safety concerns
 - User Expectation
 - Market Acceptance
 - Legal

AV with Driver in the Loop - System Architecture and Data Flow

Challenges in Driver-Vehicle Interaction

- DVI and HMI issues
 - Situation Awareness
 - Effective alert under reduced workloads
 - Carryover Effects
 - Automation influence on driver mental status
 - Decision and Control Arbitration
 - Machine-Human task sharing and switching
 - allocation of machine and human intelligence
- Critical for highly automated systems especially for Levels 3-4

Challenges for AV/DVI Design



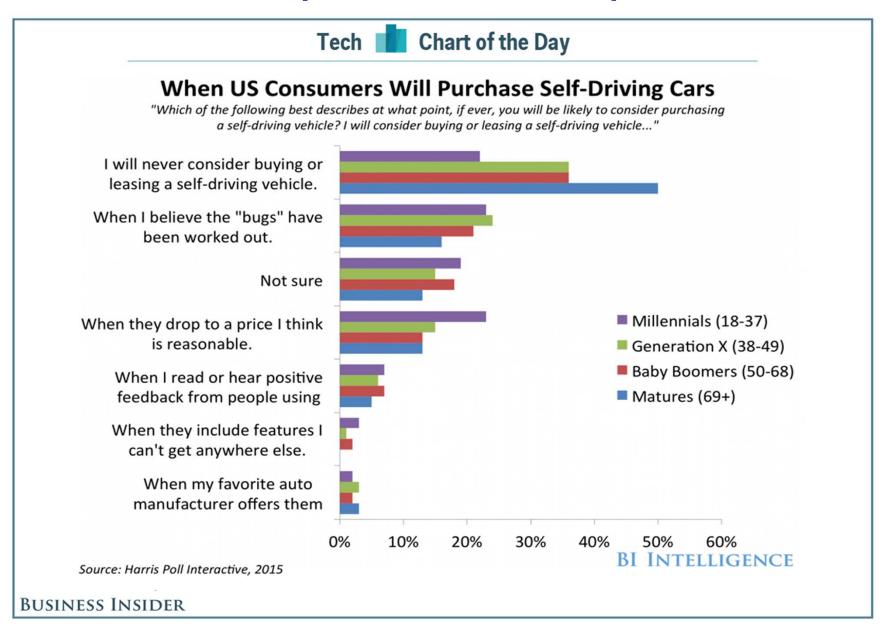
- (System) Control Requirements
 - Display content and alert mechanism
 - Appropriate (or available) options
- Drivers
 - To be alerted (awakened) from non-driving tasks
 - To be capable of taking (appropriate) actions
- Challenges for highly automated systems
 - Driver monitoring required
 - Understanding of driver intention
 - Arbitration of driver and system, if necessary

Exemplar Vehicle-Driver Interaction Situations

- Assuming a Level 3 system, and while in the process of lane changing,
 - Under what conditions, can the system accept drivers' intervention (e.g. hard braking and large steering action)?
- Assuming this is a Level 4 system, and while crossing an intersection,
 - Avoid tempting driver to intervene in complex situations?

Social and Legal Issues

 Some Laws and Vehicles Codes Need to be Changed



Dovinkad from Descentione.com

PATH

Will People Buy It?

- Market Acceptance and User Expectation -

How Safe is AV Safe Enough?

Safety Records of Human Drivers

- According to the Accident Statistics of Germany, the injury accident rate on the autobahns is 0.08 per million vehicle-kilometers.
 - In other words, on average **12 million vehicle-kilometers** are driven between the occurrences of injury accidents.
- 12 million vehicle-km per injury incident
 = 30,000 km/per year X 50 years X 8 vehicles
- The fatal accident rate on the autobahns is 1.9 per billion vehiclekilometers.
- For most states in US, the numbers are between 1.0 and 3.0.
- Current vehicles driven by humans have very strong safety records, and autonomous vehicles have to be implemented at a very high performance level to be comparable.

Look Ahead in the Coming Decade

- Highly functional automation will be available (such as valet parking and freeway driving assist)
- Carmakers will offer Level 2 and maybe Level 3 systems
- Deployment of Level 4 will be local (such as Google "pods")
- Social and technical challenges remain for completely driverless cars to be widely deployed

A Paradigm Shift

- Cars will "do things" for us when we are on the move.
 - We used to tell them what to do
 - Now they are more likely to tell us what to do
- The Google and Uber of the world are already causing a paradigm shift in the car culture.
 - Do you really need to own a car?
 - Liberty of going places for the disadvantaged and unlicensed

As good as it Gets! - Connected Automation -

• Nissan Motors Commercial (Youtube video) https://www.youtube.com/watch?v=nrNfKbk8_Oq

