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Changing role of industry 

• Combined heat and power 

• Optimized heat generation 

• Thermal processes 

Substance    heat 

 

 

 

• Fluctuatiing operation 

• Optimized heat  management 

• Electrochemical processes 

Substance  electricity 
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Energy infrastructure options for e-mobility 
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Sources: DKE, EU, Fraunhofer, hybridcars, Mercedes, US DoE 
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Heat recovery of electrolyzers 
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Nernst voltage increase by pressurization 
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Evaporation heat supply influence on voltage  

0

0.05

0.1

0.15

0.2

0.25

0 20 40 60 80 100 120 140 160 180 200 220

1 0,9 0,8 0,7 ev

Resistance heating (ev) 

System pressure in bar g 

V
o
lt
a
g

e
 d

e
m

a
n

d
 b

y
 

e
v
a

p
o

ra
ti
o

n
 i
n

 V
 Exergetic efficiency ev 

Heat supply with heat pump 



•Technical requirements and background 

•Integration in sustainable infrastructure 

•Integration in sustainable industries 

•Economic boundaries for sustainable development  

•Conclusion and recommendations 



Regenerative machines 
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IEC ACEE and thermodynamic view of motor system 
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Heat storage T2.S  > T1.S 
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Feasibility chart of HP 

Temperature function  
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Feasible solutions  

with HP possible 

No feasible solution 
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Background of Recycling 

Reduction of reversible 

separation work 

Source: F.G.:  Houtermans. Über den Energieverbrauch bei der Isotopentrennung.  

Annalen. der Physik. 5. Folge. Band 40. 1941 p 493 - 508 

Concentration 

 R
e
v
e
rs

ib
le

 s
e
p
a
ra

ti
o
n
 w

o
rk

 

Trade-off with reversible work 

needed to prepare the higher 

concentration 
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C2H4 as storage for 10 days calm 
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Industrial storage options for covering calms 
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Transition to full electric systems 

Transfer 

process 



Average cost structure in industry 
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Investment: 5800 €/(car/a) 

Sources: Audi, BMW, IFA, Manager Magazin  



Energy saving options for trucks 

Engine 
Variable valve actuation 1% - 2%  

Sequential turbo/downsizing  5%  

Speed control (injection)  5%  

Oil and water pump with variable 

speed 1% - 4%  

Controllable air compressor 3.5% 

Smart alternator, battery sensor 

electric accessory drive 2% - 10%  

Start/stop automatic 5% - 10%  

Dual fuel systems 10% - 20%  

Pneumatic booster: air hybrid  4%  

Turbocompound (mechanical/electric) 

4% - 7%  

Bottoming cycles/waste heat recovery 

(e.g. organic Rankine) 1.5% - 10% 

 

 

 

Drive train 
Automated manual transmission 4% - 

6% 

Full hybrid urban15% -30% 

Full hybrid long haul 4% - 10% 

Flywheel hybrid urban 15% - 22%  

Flywheel hybrid long haul 5% - 15%  

Hydraulic hybrid urban 12% - 25%  

Hydraulic hybrid long haul Avg 12%  
 

Vehicle 
Low rolling resistance tyres 5%  

Aerodynamic fairings 0.5% - 5%  

Aerodynamic trailer/boat tail 12% - 

15%  

Single wide tyres 5% - 10%  

Light-weight materials 2% - 5%  

Active aerodynamics  5%  

 

 

IST/ITC 
Predictive cruise control 2% -  5%  

Driver support system 5% - 10%  

Acceleration control  6%  

Vehicle platooning  20%  
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Source: IEA 



Efficiency improvement-cost relation (trucks) 

0

2

4

6

8

10

12

14

16

0 5000 10000 15000 20000 25000 30000 35000 

Engine Drive train Vehicle IST/ICT

Cost of measure in € 

E
ff
ic

ie
n
c
y
 i
m

p
ro

v
e
m

e
n
t 

in
 %

 

Source: IEA 



Examples of the roadmap 

Source: Bosch, Continental, Lotus, Mercedes  

Starter-generator 

Lightweight design 

Aerodynamics 
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Requirements 

• Minimizing irreversible entropy is design rule 

• General reversible structure is benchmark 

• Energy recovery (system) & energy saving (component) 

• Electrochemical-all electric process structure 

• Lightweigt design, minimimizing of friction 

Infrastructure 

• Integration of automotive transport in general transportation 

• Grid connected and autonomous operation can be combined to maximze 
flexibility 

•  Electrolyzers are key components in converting electricity in 
thermodynamic potential 

• Pressurization of electrolyzers is an interesting option for HT electrolyzers 

 

 



Industrial production 

• Optimization of industrial production by reversible structures 

• Recovery of electricity by motor/generators in industry 

• Heat recovery with heat pumps in industrial processes 

• Integration of industrial production in seasonal electricity storage 

• Reversible separation work base for recycling strategies 

Boundaries 

• Industrial transition depends clearly on supply structure 

• Evaluation of efficiency potential needs system approach 

• Efficiency increase strategies show intelligent compromises between 
classical solutions to new concepts 

• Prominent examples are starter-generator, leight weight design, and 
aerodynamics 
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