

Material testing for valve seat of diesel engine

Philippe KAPSA, Maha MESSAADI

Twelfth International
Conference on Flow Dynamics
October 27 - 29, 2015
Sendai International Center

Supported by
Institute of Fluid Science, Tohoku University

Laboratoire de Tribologie et Dynamique des Systèmes, Ecole Centrale de Lyon, UMR-CNRS 5513 Ecully, France

Global/Local Innovations for Next Generation Automobiles
October 27(Tue) -29(Thu),2015

Automobiles and Energy saving...

- Cars represent an importance source of energy loss in our society.
- Various aspects have to be considered :
 - Manufacturing
 - Life of the car
 - "Treatment" of "dead" cars

During the life of a car

- Performances are important but it is necessary to limit various aspects:
 - Energy losses due to friction
 - Pollution
- Lifetime
 - Wear of various parts is determinant
- Materials are very important in order to design new cars
 - Body, engine, ...
 - Need to
 - decrease the weight, the pollution, the costs, ...
 - Increase the performances, the reliability and the lifetime

Sources of friction losses in our society

2012 Automobiles occupy 14% of total.

Energy loss

Primary concern :

Reducing friction losses for saving energy

Toyota

Breakdown of car energy consumption

Friction losses occupy 35% of total energy.

Study group on car fuel-saving by tribology, JAST

Estimated reduction of friction losses in each components

- Progress for "friction and wear" aspects are possible by modifying:
 - The design of engines and mechanical parts
 - The lubricant (viscosity, additives, ...)
 - The materials (bulk, coatings, composites, ...)

- Lifetime is mainly related to wear.
 High tribological performance materials can increase the lifetime...
 - → need to develop new materials, new process, ...

Materials for automobile

LTDS

Metals for engines

- Metals for engine parts are more and more loaded
 - Mechanical stresses, temperature, chemical aspects
- Selection of high performance metals and coatings (surface treatments) are of primary interest
- Important need to have representative tests...
 - Field tests
 - Bench test
 - Laboratory tests

ELJT Laboratory

Example of ring / liner contact

• A very important mechanism for the performances and the lifetime

Topography of the liner obtained by honing

→ Bench tests are useful to study this contact but the cost is important

Materials, lubricants are very often tested using a Pin on Disc (PoD) tribometer with an alternative motion.

ELJT Laboratory

Pin on disc test can help in lubricant, materials selection

The lubricant efficiency is related to the formation of a tribochemical film on sliding surfaces leading to a reduction of the wear rate

12th ICFD, oct 27-29, 2015, Sendai

Cast iron Cylinder liner

Steel ball

Number of cycles

Study of ring / liner contact for diesel engine:
Sphere on liner contact
Oil lubricated
Reciprocating motion
150°C

Valve on seat contact for diesel engine

The seat material is subject to severe conditions:

- •**High temperature** (Ambiant $\rightarrow \approx 750^{\circ}$ C)
- •Double contact conditions :

Impact: at the closure.

<u>Sliding</u>: due to vibration or misalignments.

- •Various angles can be used to optimize the gas flows.
- Sliding Contact conditions
 - → <u>Dry</u>

12th ICFD, oct 27-29, 2015, Sendai

ITDS

→ <u>Presence of oil or combustion products</u>

- 1. Injection
- 2. Compression
- 3. Explosion
- 4. exhaust

30° SEAT

complex damage

Few studies in the litterature

12th ICFD, oct 27-29, 2015, Sendai

What test can we use?

- Classical pin on disc test appeared to be intersting but not sufficient to reproduce completely the real system
- → Development of simple specific systems

Technical requirements for the test system

- Materials, samples
 - Representative materials...
 - Steel / coating (Al alloy substrate)
- Type of contact
 - Flat on flat, Cylinder on flat, Ball on flat
- kinematic
 - Shocks --> frequency, energy, shock velocity, ... to be defined
 - And sliding
- Contact pressure / force
 - Normal force ?
 - PSA information : F impact = 700 N; Sheffield studies F combustion = 13 kN
 - Constant, variable ?
- Temperature
 - Ambiant --> 400 °C
- Atmosphere
 - Combustion gaz ?NO in a first approach
- Measurements
 - Forces, displacements, temperatures
 - Observations of surfaces
 - Wear

E J

Impact / sliding tribometer developed at LTDS

52100 steel ball

α=30; 45; 60; 90°

Sintered steel flat

Advantages:

- Simple configuration,
- A constant impact energy,
- Possibility of temperature,
- Impact angle adjustable.

Measurements during tests

- Ball position
- Impact force
- Electrical contact resistance

Measurements after test

- Profilometry,
- Wear scar observations.

IMPACT-SLIDING test

Test, 4 mJ à 16 Hz.

 $??? \rightarrow$ what is the exact motion?

Tools:

- High speed video camera
- Electrical contact resistance
- Finite elements modelling.

Observation with high speed video camera 4 mJ à 16 Hz.

Impact / sliding tester

Equation of motion:

$$F_1 = \frac{P}{2} (\cos 45 - \mu)$$

$$m\ddot{x} + kx = F_1 \sin \omega t$$

FEM quasi static contact

- Kinematics for 45° impact
- Friction
- → Dynamic phenomena are negligible.

FEM model.

Experiments with 2 steels: M2 and OB1

- Surface porosity: 22%,
- → Density: 8.16 g/cm³
- Carbide size: 10 μm.
- Carbides:
 - $-M_6C$
 - -MC
- Hardness HV: 504

OB1

- Surface porosity: 28%,
- \rightarrow Density: 7.75 g/cm³
- Carbide size 5 μm.
- Carbides
 - $-M_{23}C_{6}$
 - $-M_7C_3$
- Hardness HV: 733

12th ICFD, oct 27-29, 2015, Sendai

LTDS

ELIT

Test results: dry conditions

Impact / slidling tests

- FLAT wear volume increases with impact angle
- OB1 presents the lowest wear.
- Antagonist material of OB1 presnets the highest wear.
- Maximal wear volume is observed for 45°.

Test results: dry conditions, effect of temperature

Wear for reciprocating PoD at various temperatures

- Wear volume of ball decreases with temperature
- Wear volume for OB1 flat increases with temperature

Impact / sliding tests

- Wear volume of ball is maximum at 400°C.
- Wear volume of OB1 flat is ùmaximum at 180°C.

The contact loading modifies the oxidation process and the wear

Test results: lubricated conditions

Reciprocating PoD test in lubricated conditions:

• The friction coefficient decreases when a lubricant is present

Impact / slidng test with lubricant

- The lubricant remains in the contact
- A metal / metal contact is detected by ECR measurements. Longer than without lubricant
- Impact force is decreased by the lubricant
- Impact force decreases with lubricant viscosity

Observation with high speed camera. Lubricated contact, 45°

- Reduction of adhesion.
- Observed for all angles
- Damage for lubricated case are initiated at the pores

LTDS

Conclusions

- Automobiles for the future: energy loss and pollution
- Materials (and surface treatments) are a key factor
 - New materials, coatings, surface texturation, ...
- It is necessary to develop specific test systems adapted to "limited parts"
- Example: Valve / seat contact
 - A specific test system have been developed and characterized
 - 2 materials have been tested in dry and lubricated conditions
 - Progress in the understanding to imagine new materials
- Interest to associate experiments to modeling