Supercritical CO₂ Technology

cleaning and catalyst impregnation 超臨界CO2技術 -洗浄, 触媒担持プロセス

(Hiroshi INOMATA)

Research Center of SCF technology, Graduate School of Engineering, Tohoku University

What is SCF ?

Non-condensable dense fluid above its critical temperature

Capable of controlling various properties widely by tuning temperature and pressure conditions

General features of supercritical fluids

ONon-condensable dense fluid

Can vary its density continuously from gas-like to liquid-like values.

Ointermediate between gas - liquid

Property	Gas	SCF	Liquid
Density [kg/m ³]	0.6~2	300~900	700~1600
Viscosity [10 ⁻⁵ Pa•s]	1~3	1~9	200~300
Diffusivity [10 ⁻⁹ m ² /s]	1000~4000	20~700	0.2~2
Kinematic Viscosity [10 ⁻⁷ m ² /s]	100	1~10	10

Solubility Parameter - index of solvent property-

Applications

- 1. Cleaning of metal parts and clothes
- 2. Metal particle impregnation for catalyst preparation

No needs of DRYing process -

- 1. Pump-less circulating
 - ⇔ Reciprocating Pump: generating particles

Solvent recycle during circulation
Solvent renewing

Rinsing System

2. High penetrating and low surface tension

Porous supported catalysts

Benefits of CO2 as a cleaning solvent

- 1) Environmental Friendly
- 2) Non-toxic, Stable
- 3) Inert (Less reactive)
- 4) Dissolve lipophilic
- 5) High diffusivity
 - +Low surface tension
- 6) Easy separation from dirt
- 7) Expect sterilization

- precise machine
 - complicated(integrated) device
- water sensitive materials
- requiring long drying time
- •solvent residual problem

Pump-less Solvent Circulation Method

ポンプレスの溶媒循環機構

Test Cleaning Results —Flux—

Distance from Hole Surface [mm]

- ■Sub_critical at 25°C
- Sub_critical at 25°C & Ultrasound (400 W, 250 kHz)
- □Supercritical at 32°C, 7.7MPa
- ■Supercritical at 40°C, 9.3MPa

<u>Comparison of Cleaning Performance</u> <u>[Parafines+ Oil Red]</u>

Almost same <Ps: No detergent for CO2 cleaning>

HEPA Filter Recycle (Exp.Results)

Conclusions

- Cleaning is a promising field for supercritical CO₂ (sc-CO₂) technology because of its high diffusivity, low surface tension and no residual risk.
- High diffusivity and low surface tension are nice features for impregnation into porous meterials such as supported catalysts.
- Environmental friendly feature of sc-CO₂ is also suitable as a cleaning solvent.