

State-of-the-art MEMS Gyroscopes for Autonomous Cars

Shuji Tanaka

Department of Bioengineering and Robotics Microsystem Integration Center Tohoku University

mems tohoku

Automobile Museum at Division of Mech. Eng.

Automobile Museum 自動車の過去未来館 at Division of Mechanical Engineering, Aobayama Campus Ford Model T and A, and Toyota Motor's F1 engine

Ford Model A and T

世界の自動車44 フォード1,二玄社

Model T Touring (1925)

Model A Deluxe 2-door Sedan (1931)

Classic Automobile Engines

Daimler's engine (1883)

富塚清,内燃機関の歴史,三栄書房(1969)

4

Engine for Ford Model A (1927) 3285.5 cc, 4 cylinders, 40 ps/2200 rpm

Sensors in Automobiles

野々村(豊田中央研究所),自動車用センサとその小型化,センサ・シンポジウム2010

Vehicle Stability Control (Toyota Motor)

杉山他(トヨタ自動車), VSC(車両安定性制御)システム,富士通テン技報,27号,14,1(1996)

Vehicle Stability Control (Toyota Motor)

杉山他(トヨタ自動車), VSC(車両安定性制御)システム,富士通テン技報,27号,14,1(1996)

MEMS Vibratory Gyroscope

Gyroscope for vehicle stability control (Toyota Motor, Tohoku Univ.)

MEMS Vibratory Gyroscope (Toyota Motor)

Future Applications of MEMS Gyroscopes

Performance of Gyroscopes

DTG, FOG, RLGの図:多摩川精機 HRGの図:Northrop Grumman

Bias Stability of Gyroscope

12

Difficulties of MEMS Gyroscope

Any small imperfections result in error.

- Imperfect orthogonality of drive and sense axes
- Mechanical and electrical coupling between drive and sense axes
- Unideal amplifier etc.

"Compromises" are made to avoid difficulties.

- Intentional mismatch in resonance frequency between drive and sense axes (Mode mismatch)
- Low quality factor
- \rightarrow Limit in performance
- \rightarrow Mode matching and high quality factor
- \rightarrow Much better structure and advanced control

High-Performance MEMS Gyroscope (SSS)

Foucault Pendulum

In 1851, French physicist Jean Bernard Léon Foucault (1819-1868) demonstrated the revolution of the earth using a pendulum of 67 m and 27 kg suspended in Panthéon de Paris.

Wikipedia

The vibration plane rotates, although only gravity works on the mass.

Foucault pendulum is a rateintegrated gyroscope (whole angle mode gyroscope).

Whole Angle Mode Gyroscope (UC Irvine)

I.P. Prikhodko et al., Sensors and Actuators A, 177 (2012) pp. 67–78

Symmetric structure Mode matching High Q factor

High-Performance MEMS Gyroscope

Northrop Grumman, UC Irvine (Prof. Shkel), Hilton Head Island Workshop 2014

Allan variance for force rebalance mode

- Force rebalance mode and whole angle mode ₁₇can be switched.
 - Scale factor stability is 3 ppm in whole angel mode.
 - FR-mode is less affected by frequency mismatch.

Whole Angle Mode Gyroscope

D. Senkal1, ... T.W. Kenny2, A.M. Shkel1, 1UC Irvine, 2Stanford Univ., IEEE MEMS 2015

Hemispherical Resonator Gyroscope

High-end gyroscope for aerospace applications (Northrop Grumman)

Hemispherical resonator made of fused silica $(Q = 25 \times 10^6)$ Bias stability 0.005 %

Bias stability 0.0005 % Price ~1M US\$?

Summary

- A high-performance gyroscope of affordable price is a key component for autonomous cars.
- A bias stability of 0.1 % or better is required.
- This level of bias stability is realized by fiber optic gyroscopes, but the price is two or three orders of magnitude higher than expected.
- The required bias stability is two orders of better than that of the present MEMS gyroscopes for consumer applications.
- Drastic improvement in the performance of MEMS gyroscopes is theoretically possible but practically challenging.

[Requirements]

- Perfectly-symmetric two-axis orthogonal resonators with ultrahigh quality factor
- Advanced control system to compensate any imperfection
 and low-noise analog frontend

MEMS Facilities in Aobayama Campus

S. Tanaka Laboratory Cleanroom

Microsystem Integration Center

MEMS R&D Centers

- From proof-of-concept on small pieces to prototype development on 4 or 6 inch wafers
- Prototyped devices in Microsystem Integration Center can be basically utilized for business, i.e. as commercial samples and provisional products.
- For mass-production in small-to-medium volume, developed technology can be smoothly transferred to our partner foundry, MEMS Core in Sendai, Japan.

Tohoku University, Department of Bioengineering and Robotics S. Tanaka Laboratory

Chair of Advanced Bio-Nano Devices

Please visit S. Tanaka Laboratory website

at http://www.mems.mech.tohoku.ac.jp/index_e.html

IEEE-NEMS 2016 Matsushima Bay and Sendai MEMS City

The 11th Annual IEEE International Conference on Nano/Micro Engineered and Molecular Systems

17-20 April 2016

Hotel Matsushima Taikanso & L-Park Sendai, Miyagi, Japan

Sponsored by Microsystem Integration Center, Tohoku University, MEMS Park Consortium and IEEE Nanotechnology Council General Chair: Shuji Tanaka, Tohoku University Technical Program Committee Chair: Takahito Ono, Tohoku University

