

Control of Vehicle with a Large Sideslip Angle

Kazuhiro Kosuge and Hiroshi Nakano
Bioengineering and Robotics
Graduate School of Engineering
Tohoku University
Sendai 980-8579
JAPAN

Sideslip Motion During Automotive Race

Skilled drivers utilize sideslip motion to drive a car fast [2] in automotive races such as rally races.

e.g., Drift

Drifting rally car [3]

If we could control a vehicle with a large sideslip angle, fast and safe driving, like a rally driver could be realized.

^[2] M. Croft-White, "Measurement and analysis of rally car dynamics at high attitude angles," Ph.D. dissertation, Cranfield Univ., Cranfield, UK, May 2006.

^[3] TRD rally challenge http://trdrallychallenge.jp/

Nonlinear Tire Friction Property

During a large sideslip motion, nonlinearity of tire-road friction property could not be negligible.

Nonlinear tire model

- Depends on environmentrelated properties
 - road surface condition
 - temperature

Goal of Project DREEMS

To develop a control system for a vehicle with a large sideslip angle using a steer angle of front wheels and driving forces of four independently-driven wheels.

- A motion control system is designed based on a planar vehicle dynamics.
- The resultant control system does not require the nonlinear tire model.
- A steady-state cornering experiment is executed to illustrate the effectiveness of the proposed scheme.

Vehicle Model

Assuming that roll and pitch rotations are negligible, we consider to control the following three motions;

- Forward translational motion
- Lateral translational motion
- Yaw rotation,

by using driving forces of four wheels and the steer angle of front wheels as control inputs.

Vehicle moving on horizontal plane

Controller Design

- Forward translational motion
 - Driving forces could be considered dominant force.
 - Controlled using Driving forces
- Lateral translational motion
 - Lateral forces could be considered dominant force.
 - Controlled using Lateral forces
- Yaw rotation
 - Motion are affected by driving forces and lateral forces.
 - Controlled using Driving forces

- Redundancy
- Easy to observe
- Generated actively

Controller for Forward Translational Motion & Yaw Rotation

Block diagram of the control system for forward translational motion and yaw rotation

Controller for Forward Translational Motion & Yaw Rotation

 We utilize the pseudo-inverse method for deriving the driving forces.

Block diagram of part of driving force resolver

Experimental System

Real-time operating system

Vehicle mass: 5.77 [kg]

Yaw moment of inertia: 0.1043 [kgm²]

Wheel diameter: 0.097 [m]

Wheel polar moment of inertia: 0.156x10⁻³ [kgm²]

Control frequency: 1 [kHz]

Controller gain: $\begin{bmatrix} k_{Vx} & k_{V\psi} & k_{V\beta} \end{bmatrix}^T = \begin{bmatrix} 10 & 30 & 10 \end{bmatrix}^T$

Cornering stiffness : $C_1 + C_2 = 40 \text{ [N/rad]}$

Experimental System

- Forward velocity
- Lateral velocity (Sideslip angle)

Motion capture system

Yaw rate

Gyroscope

- Angular velocity of each wheel
- Steer angle

Rotary encoder

Experiments

Steady-state cornering experiment

4 seconds after start

Increase the desired value of sideslip angle

Stopped state

Desired state

Start

Shortly after start

Increase the desired value of forward velocity & yaw rate

Experimental Results

Controller 2 Sideslip angle $\beta = -40 \deg$

Estimated longitudinal force

Conclusion

- We proposed a motion control system of an electric vehicle with a large sideslip angle using driving forces of four independently-driven wheels and the steer angle of front wheels.
- Proposed control system is separated into two controllers.
 - Forward translational motion & yaw rotation controller using redundant driving force inputs.
 - Lateral translational motion controller using steer angle as an input.
- Steady-state cornering experiment is executed.
- The experimental result shows that the proposed method can control the large sideslip motion of the vehicle.