

Measuring Coefficient of Friction in Ski

<u>Naoto Miyamoto</u>, Tatsuo Morimoto, Akihiro Isomura, Yukiko Obara, Patrick Bonnaud, Ryuji Miura, Ai Suzuki, Nozomu Hatakeyama, Akira Miyamoto, and Yusuke Yaegashi*

New Industry Creation Hatchery Center (NICHe), Tohoku University *Gallium Co., Ltd.

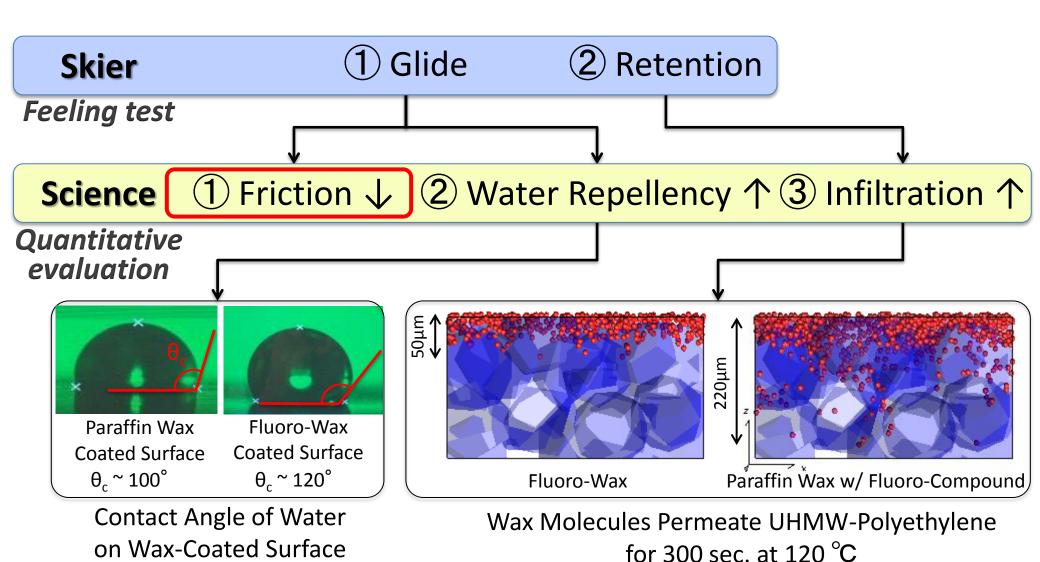
Significance of Tools in Ski

Winning record at the Olympic Games

	1924 Paris	2012 London	Speed
	1924 Chamonix	2014 Sochi	up
Marathon	2:41:22	2:08:01	x 1.26
42.195km	15.7km/h	19.8km/h	
XC Ski	3:44:32	1:46:55	x 2.10
50km	13.4km/h	28.1km/h	

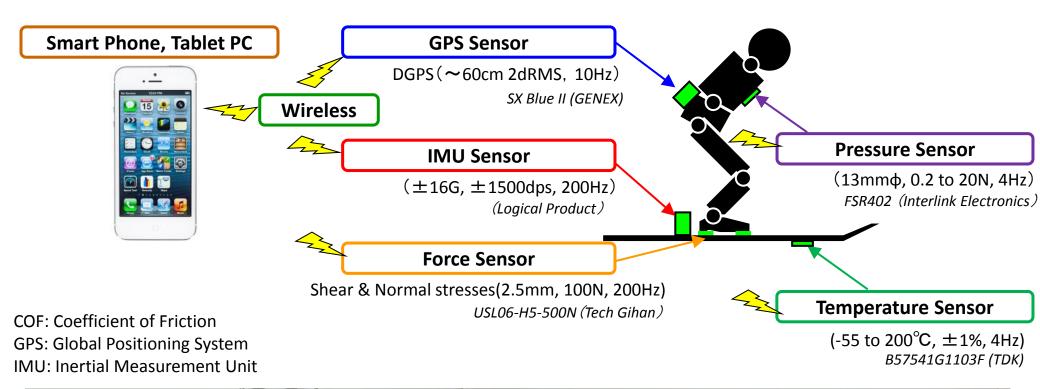
XC: Cross-Country
UHMW: Ultra High
Molecular Weight

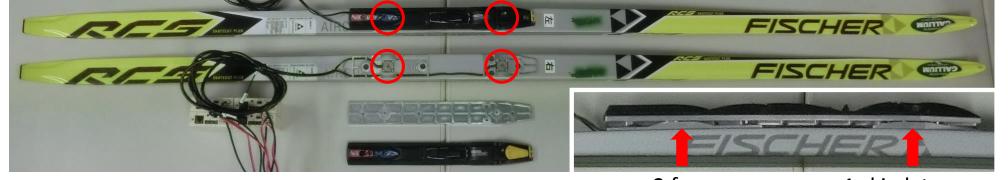
Progress of Tools in Ski


	1924	2014		
Ski Plate	Wood	Resin + Plywood + Hollow Honeycomb		
Ski Base	Wood	UHMW-Polyethylene		
Poles	Bamboo 🕨	Carbon		
Wax	Pine Resin	Fluorine Compound		
Boots	Leather •	Plastic + Carbon		
Wear	Wool	Elastic Chemical Fiber		
Trail	Tread down	Snow Groomer + Tracksetter		

Glory shines for one who obtains and masters excellent tools before anyone else in the world

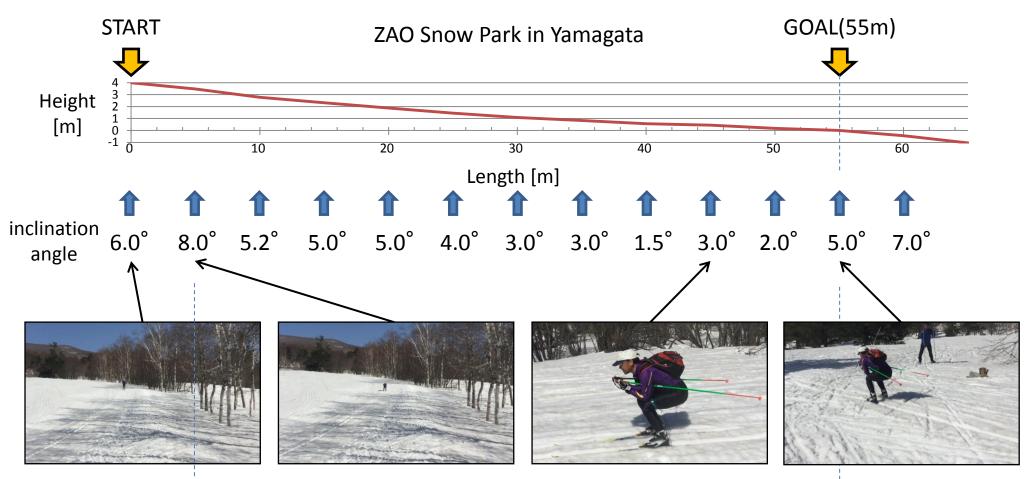
Requirements of Ski Wax




Simulated by Computational Chemistry

Motivation of Friction Measurement

- Factors that affect wax selection include Temperature, Snow crystals, Humidity, Wind, Course, and Sunshine.
- Currently, national team accompanies a wax expert called "Waxman" who selects race wax from several hundreds of combinations based on the factors.
- But he keeps the wax selection secret, and never leak even to ski player what kind of wax was used.
- Therefore coefficient of friction (COF) of wax has never been subject to systematic research.
- COF can be estimated using sensor fusion, though it is difficult to measure sliding friction directly.
- We have started developing a wearable COF estimator with which ski player does not feel uncomfortable during skiing.

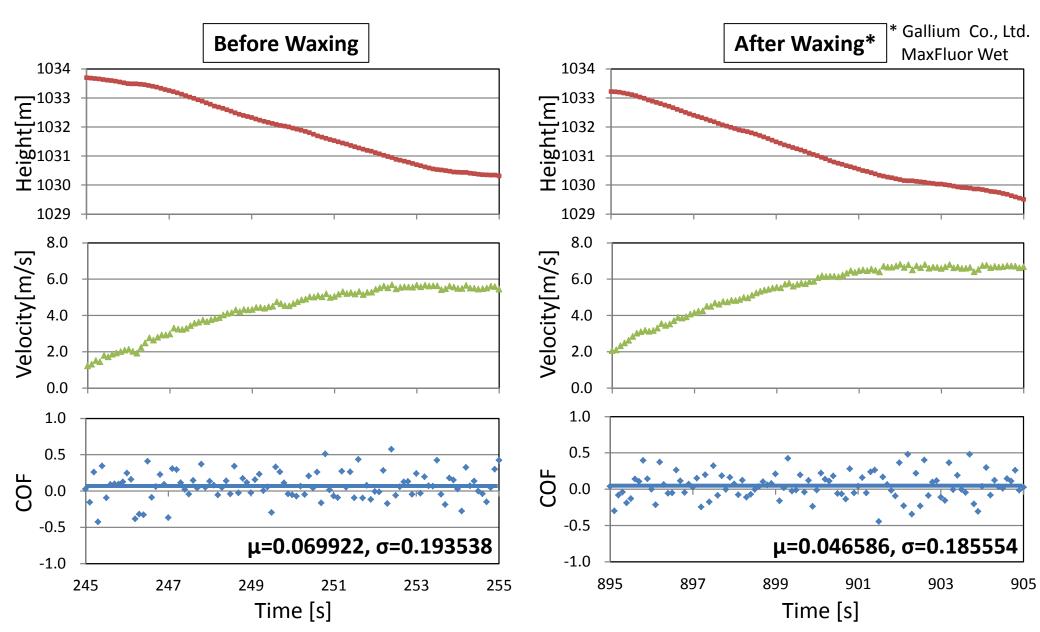

Measurement Equipment of COF during Skiing

2 force sensors per 1 ski plate

Measurement Condition

Date: 4th Apr. 2015 13:35~14:14

Weather: Fine

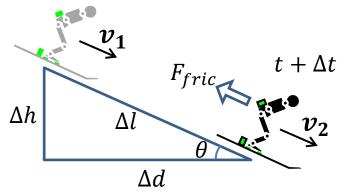

Wind Speed: 0~3m/s Air Temperature: 15°C Snow Temperature: +0.3°C@Surface,

-0.2 to -0.4°C@5cm Below Surface

Snow Quality: Granulated, Sintered | 0.5365g/cc

Skier: Junichi Sato (an expert of wax test)

Measurement Results



Measurement Results (Cont'd)

* Stored in warehouse for several years			** MaxFluor Wet (Gallium Co., Ltd.)			
	Before Waxing*			After Waxing**		
Test No.	COF	σ	Top Speed [km/h]	COF	σ	Top Speed [km/h]
1 st	0.06992	0.19354	7.3620	0.04659	0.18555	8.8200
2 nd	0.06768	0.21690	7.8552	0.04766	0.15475	8.9496
3 rd	0.06810	0.19163	7.5780	0.04701	0.16135	8.8560
4 th	0.06830	0.16676	7.9236	0.04616	0.19038	8.6472
Average	0.06850	0.19221	7.6797	0.04686	0.17301	8.8182
				†		†

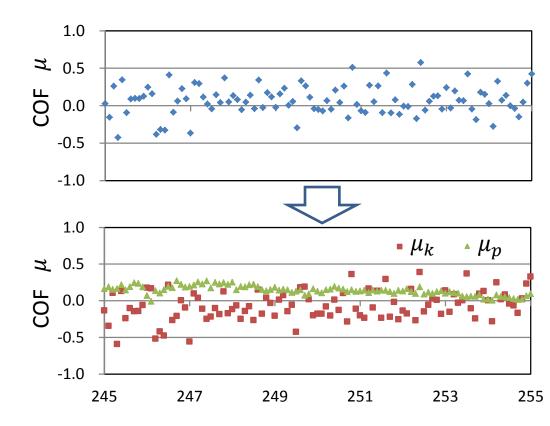
COF is effective because it is more sensitive than speed. However standard deviation (σ) is not small enough.

Discussion

$$F_{fric}$$
: Friction force

$$mg\Delta h = \frac{1}{2}m\Delta v^2 + F_{fric}\Delta l$$

$$\mu = \mu_k + \mu_p$$

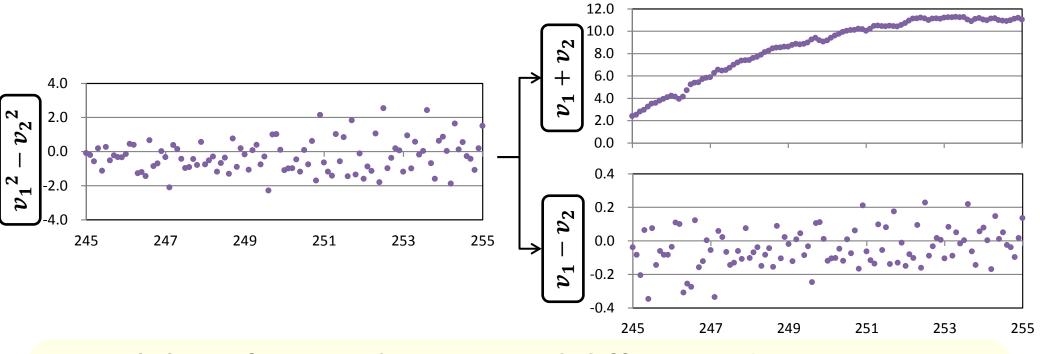

where

$$\mu_k = -\frac{1}{2g\Delta d} \cdot (v_1^2 - v_2^2)$$

$$\mu_{k} = -\frac{1}{2g\Delta d} \cdot (v_{1}^{2} - v_{2}^{2})$$

$$\mu_{k} = -\frac{1}{2g\Delta d} \cdot (v_{1} + v_{2}) (v_{1} - v_{2})$$

$$\mu_p = \tan \theta$$


 μ_k : COF from kinetic energy

 μ_p : COF from potential energy

μ_k is more variable than μ_p

Discussion (Cont'd)

$$\mu_k = -\frac{1}{2g\Delta d} \cdot (v_1^2 - v_2^2) = -\frac{1}{2g\Delta d} \cdot (v_1 + v_2) (v_1 - v_2)$$

Variability of COF is due to speed difference $\Delta v = v_1 - v_2$ We have developed more accurate GPS with accelerometer in order to reduce the variability

Conclusion

- Coefficient of friction (COF) is very important in ski
- We have successfully measured and estimated COF during skiing
- Results show that COF is more than twice as effective as conventional speed test.
- Variability in COF estimation is the issue, but we have already developed a solution which we plan to evaluate in this season.

This research is supported by SIP (Cross-ministerial Strategic Innovation Promotion Program) Innovative Design/Manufacturing Technologies