Water sorption in nanoporous silica via molecular simulations

P. A. Bonnaud, R. Miura, A. Suzuki, N. Miyamoto, N. Hatakeyama, and A. Miyamoto

New Industry Creation Hatchery Center Tohoku University – Sendai, Japan

October 27-29, 2015

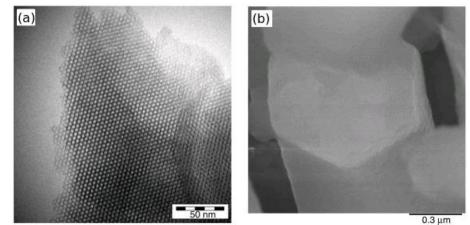
Porous Materials in cars

Sensors (e.g., ensure an optimum engine combustion)^{1,2}

Gas capture (e.g., catalytic converter to reduce greenhouse gas emissions)^{1,2}

[1] D. J. Wales et al. *Chem. Soc. Rev.* 44 (2015) 4290
[2] T. Wagner et al. *Chem. Soc. Rev.* 42 (2013) 4036

Reduce cost: use cheap and robust porous materials


(e.g., reduce the use of precious, expensive materials (Platinum, Palladium, Rhodium, ...) like in catalytic converters)

Silica (Zeolites, mesoporous silica (e.g., MCM-41, SBA-15))

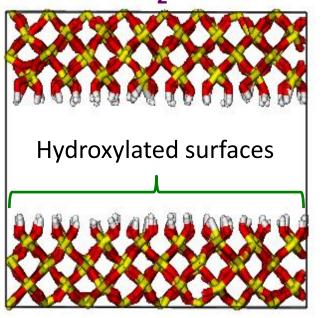
Transmission Electron Microscopy (TEM) image of MCM-41

Hydrophilic materials

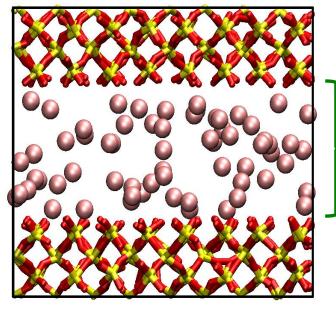
Schreiber et al., Phys. Chem. Chem. Phys., 3 (2001) 1185

Sensor for monitoring the amount of water vapor Ideal internal combustion in engines:

Hydrocarbons + $O_2 \rightarrow H_2O + CO_2$



Molecular simulations and models


2 molecular models (effect of surface chemistry)

SiO₂-OH

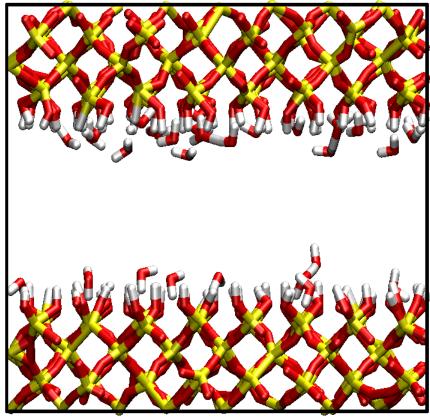
7.8 OH.nm⁻²

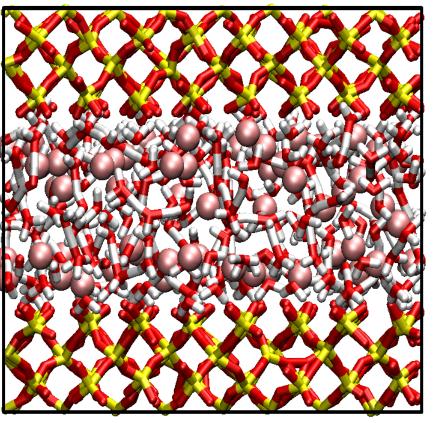
SiO₂-Cs⁺

 $\sigma \sim -0.6 \text{ C.m}^{-2}$

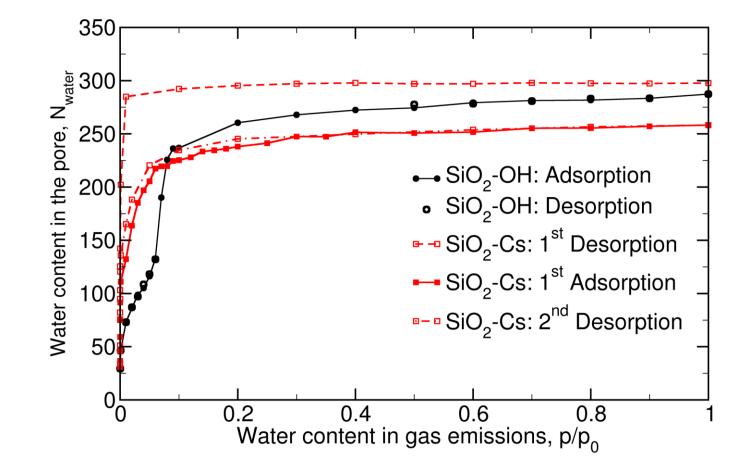
Random - distribution of Cs⁺ counterions

+ Grand canonical Monte Carlo to simulate water sorption isotherms




Pictures of water sorption mechanisms

SiO₂-OH



001

Water sorption isotherms

We can relate the water content within the pore with the water content of car gas emissions (combustion efficiency)

- Nanoporous silica is a good candidate for the design of sensors in car industry
- We explored different surface states (chemistry) in silica nanopores in order to observe the effect on water sorption
- The structure of bi-component confined fluids (water and Cs⁺ counterions) affects water sorption properties

