Global/Local Innovations for Next Generation Automobiles October 27-29 , Sendai, Japan

Mesoscale approach to understand tribological behavior of lubricants

Sophia Berkani, 1,2 Sophie Loehle, Miriam Chebre, Akira Miyamoto, 2

N. Hatakeyama², K. Okushi², Y. Obara², S. Asakura², K. Araki², M. Tanno²

1 TOTAL MARKETING SERVICES - CReS Solaize France

2 New Industry Creation Hatchery Center - Tohoku University, Japan)

東北大学未来科学技術共同研究センタ-New Industry Creation Hatchery Center

Outline

I. Context

II. Principle of mesoscale simulator

III. Experimental set-up

IV. Results and discussion

V. Conclusion & Perpectives

I. Context

Lubrication of internal Combustion engine (ICE)

Meso-scale simulation: Simulation method

Coefficient of friction = (Fluid friction + Boundary friction) / Load

The surface is discretized into meshes

The base level of Upper

Meso-scale simulation: Simulation method

1STEP

Meshes outside of the system after movement => placed in the vacant side of the surface.

Meso-scale simulation: Simulation method

Determination of the oil film thickness (considering the elastic deformation)

average oil film thicknes hO.

$$h_{k,l} = \frac{{x_K}^2 + {y_l}^2}{2R} + w_{k,l} + constant$$

 $h_{k,l}$: oil film thickness x, y: Cartesian coordinates R: Reduced radius The constant being that the required load is give by the pressures calculated from Reynolds equation (decided by convergent calculation).

Basic Equation Currently Used in the Simulation

The formulas of frictional force

Coefficient of friction = (Fluid friction + Boundary friction) / Load

Non-contact part

Fluid friction:

 $F = \eta \cdot U \cdot A / h_0$

 η : Coefficient of viscosity

U: Sliding velocity

h₀: Average film thickness

A: Area of a friction surface

Determination of contact part

Boundary friction:

$$F = A \{ \alpha s_m + (1-\alpha)s_t \}$$

A: Load burden area

lpha: The rate which touches directly

 s_m : Shearing strength of metal and metal

st: Shearing strength of a boundary film

Meso-scale simulation: Simulation algorithm

III. Experimental set up

Tribological condition

Conditions

Contact: Steel/steel AISI 52100

Temperature: 100°C

Oil: Base oil group III

Normal load: 10 N

Rolling speed: 2500 -> 10 mm/s

SRR: 0.025 to 0.5

Comparative study

Experimental mean: MTM tribometer

V. Conclusion

→ A simulator on prediction of friction using a mesoscale approach for rough contact, was performed.

→ The simulator allowed us to approximate the friction response over a large range of shear rates for base oil in good agreement with experimental data at 100 C and for low SRR.

→ This simulator allowed us to make a link between simulation at meso and macro scale.