Advanced Automotive Three Way Catalysts via Solvothermal Reactions

Tsugio Sato, Shu Yin Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577, Japan

CONTENTS

- Ceria-based mixed oxides for automobile exhaust gas cleanup
- Tin oxide-based mixed oxides for automobile exhaust gas cleanup

Improvement of OSC of CeO₂ by doping with metal ion

$$CeO_2 \longrightarrow Ce^{4+}_{1-x} Ce^{3+}_{x} O_{2-x/2} \Box_{x/2} + x/4 O_2$$

The ideal $r(M^{n+})/r(O^{2-})$ ionic size ratio of MO₈ = 0.732 In the case of fluorite structure ceria: $r(Ce^{4+})/r(O^{2-}) = 0.703$

Ce⁴⁺ is not large enough to stabilize the fluorite structure

Improve the OSC by doping with metal ion smaller than Ce4+

8 cordination ion size (nm)		of various metal ions	
Ce ⁴⁺	0.097	Ti ⁴⁺	0.067
Zr ⁴⁺	0.084	Sn ⁴⁺	0.077
Ca ²⁺	0.112	Nb ⁵⁺	0.071
Fe ³⁺	0.072	Bi ³⁺	0.071
Al ³⁺	0.059		

Crystal structure of CeO₂

8 coordination ionic radii (nm) $Ce^{4+}: 0.097$ $Zr^{4+}: 0.084$ $Sn^{4+}: 0.077$ $Ca^{2+}: 0.112$ $Mn^{2+}: 0.093$

Three-way catalytic property

Weight 60mg (including Pd/Al₂O₃)

Mixed gas $\begin{array}{l} \mbox{250 ml/min, NO (500ppm), CO (5000ppm), C_3H_6 (400ppm), H_2 (1000ppm), O_2 (5000ppm), CO_2 (14\%), H_2O (7\%), $weak lean} \end{array}$

 $AI_2O_3/Pd/Ce_{0.5}Zr_{0.42}Sn_{0.08}O_2$

Al₂O₃/Pd/Ce_{0.5}Zr_{0.4}Ca_{0.1}O₂

Full line: Samples prepared in our work Dotted line: Al₂O₃/Pd/CeO₂ of a standard sample

Conclusions for the ceria-based mixed oxides for the automobile exhaust gas cleanup

- The OSC of CeO₂ could be improved by codoping of Zr⁴⁺ with Sn⁴⁺ and/or Ca²⁺.
- $\label{eq:product} \checkmark \gamma \text{-Al}_2 O_3/\text{Pd/Ce}_{0.5} \text{Zr}_{0.4} \text{Ca}_{0.1} O_2 \quad \text{exhibited} \quad \text{the} \\ \text{excellent three way catalytic performance} \\ \text{superior to } \gamma \text{-Al}_2 O_3/\text{Pd}/\text{Ce}_{0.5} \text{Zr}_{0.4} \text{Sn}_{0.1} O_2 \text{ and } \gamma \text{-} \\ \text{Al}_2 O_3/\text{Pd/Ce}_{0.5} \text{Zr}_{0.5} O_2 \end{array}$

- Ceria-based mixed oxides for the automobile exhaust gas cleanup
- Tin oxide-based mixed oxides for the automobile exhaust gas cleanup

1. Morphologies control of SnO₂ Preparation of various morphologies of SnO₂ particles to evaluate the OSC.

2. Alkali earth metal ion doping with SnO₂ Effect of alkali earth metal ion doping on the thermal stability and OSC of SnO₂.

Specific surface areas of the various morphologies of SnO₂

Specific surface area:
Porous SnO₂ (21.6 m²/g) >
Aggregates of SnO₂ (13.5 m²/g) >
Hollow structured SnO₂ (8.28 m²/g)

OSC of the annealed SnO_2 samples and CeO_2 .

- $rac{\sim}$ SnO₂ showed the OSC superior to CeO₂ below 500°C.
- The OSC of the SnO₂ samples changed depending on the specific surface area in the order porous SnO₂ particles > aggregated SnO₂ nanoparticles > hollow structured SnO₂ particles.
- ☞ The porous SnO₂ particles showed the OSC superior to CeO₂ even at 600°C

OSC of the doped SnO₂ samples and CeO₂

As expected, the OSC of porous SnO₂ particles could be greatly improved by doping with alkali earth metal ions such as Sr²⁺ and Ba²⁺, but degraded by doping with Ca²⁺ and Mg²⁺.

Representative Three Way Catalytic Performance

Fig. CO – NO - n-C₄H₁₀ ガス浄化活性測定装置

ガス流量	1L/min
ガス組成	O2: 3000ppm
	CO : 3000ppm
	NO : 500ppm
	n-C ₄ H ₁₀ : 700ppm
	N ₂ : balance

Development of Advanced Automotive's Catalysts 11

Conclusions for the tin oxide-based mixed oxides for the automobile exhaust gas cleanup

- Porous SnO₂ particles possessing the OSC superior to CeO₂ could be prepared by solvothermal reaction, where the large specific surface area seemed to be useful to improve the OSC property.
- The OSC of SnO₂ was greatly improved by doping with alkali earth metal ions such as Sr²⁺ and Ba²⁺.
- $\square Ba-SnO_2/Pd/\gamma-Al_2O_3 \text{ exhibited the excellent three}$ $way catalytic performance superior to CeO_2/Pd/\gamma Al_2O_3 and Ce_{0.5}Zr_{0.5}O_2/Pd/\gamma-Al_2O_3$