Future Role of Safety Testing Technology in Vehicle Design and Development and Highway Safety

Professor Cing-Dao Kan

Wednesday, October 28, 2015

Overview

- Full scale vehicle crash testing
- Organizational aspects
- Sled testing
- Component testing
- Interior & pedestrian safety testing
- Anthropomorphic test devices ("dummies")
- Testing and simulation

Crash test - history

- 1934: First barrier crash test by GM
- 1959: First crash test at Mercedes Benz
- 1979: NHTSA begins crash testing
- 1997: Euro NCAP's first results released
- 2006: China NCAP

Crashworthiness then and now

Fatalities
in Germany
1950-2010:

- ◆ 1950's:
- ~ 6 deaths per 100 million miles traveled in US
- **2009**:
- ~ 1 death per 100 million miles traveled in US

Side Impact – e.g. Oblique Pole Test

- "Flying Floor"
- Pre-test preparations
- "Impact point pin"
- "Retaining bands"
- Camera positioning
- Sensor technique
- ◆ 50% male and 5% female front occupants

Quasi-static roof strength tests

- FMVSS 216(2 sides, 5 inch)
- IIHS test(1 side, 10inch)

Frontal – IIHS Small Overlap Impact

- 25 % overlap
- ◆ 40mph
- since 2012

Additional test configurations

- Internal tests
- Real world safety
- Sensor tests
- Rear seat occupant
- Compatibility tests
- Future ratings
- Future regulation

Future test – Oblique Impact

- Configuration not final
- Activities in Europe and US
- New barrier
- New load paths, kinematics
- New dummy

THOR

Vehicle development process

- Typically 3-4 years
- Can be shorter for derivatives
- Little or no testing in digital prototype phase

Vehicle functions

- Noise & Vibration Analysis
- Fatigue & Endurance strength
- Aerodynamics Analysis
- Fuel Consumption Analysis
- Vehicle Dynamics
- Active Safety
- **...**
- Passive Safety

OEM - internal interactions

Testing

(full scale, sled, subsystem, component)

Simulation

(vehicle structure, occupant, pedestrian)

Accident Research

(Onsite Investigations, Database Analyses)

Design/Project

(project management, styling packaging, cost, weight..)

Challenges for testing

- Increasing number of vehicle platforms and derivatives
- Increasing number of requirements
- Stringent development plans
- Parallel setup and performance of tests
- Set priorities which test is necessary (which other tests are being covered, which can be skipped)
- Highly qualified personnel of different expertise: ...
- Well organized processes (parts, setup, sensor, postprocessing, pictures, filming ...)

Necessity of sled testing

- Very realistic & efficient for load cases with little intrusion
- Complex load cases (e.g. side pole) require more validation & upfront sled setup
- Multiple use of sled with prototype/ predecessor interior
- Simulation (more realistic vehicle & intrusion behavior) and sled test (realistic restraint system hardware characteristics) complement each other
- Many tests with fast adaption (airbag folding ..) possible
- Very important (due to reduced & late full scale testing)

Sled test boundary conditions

- Vehicle pulse from testing (early prototype or predecessor)
- From simulation
- Intrusion profile
- Timing
- Tilting angle

t=20, 40 ..ms

Sled test devices

- Frontal impact sled
- Sled with pitching
- Side barrier sled on sled
- Side pole test:
 - 1) full vehicle body in white structure on sled
 - 2) sled with predefined hinges, pre-deformed structure (developed using simulation)

Rear impact - Whiplash

- BioRID
- EuroNCAP
- IIHS

- Precise seating procedure
- Cooperation with seat manufacturer

Advanced sled testing system

- Multiple intrusion profiles/pulses
- Capture complex intrusions
- Principle testing
- Evaluate injury mechanisms

Restraint components then & now

- ◆ 1958: Volvo invents 3-point seat belt
- ◆ 1971: Airbag patented by Mercedes
- ◆ 1980: Airbag in production (S-Class)

Today: xx airbags & optimized restraints

Pedestrian safety & Interior impact

◆ FMVSS 201u: upper interior head impact protection requirement since 1995 (US)

Pedestrian protection requirements (Euro NCAP)

Pedestrian safety (Euro NCAP)

- Head impact
- Leg impact
- Adult
- Child

Pedestrian safety - Countermeasures

- Active systems
- Passive systems
- Affects styling
- Affects Packaging

Dummy historical

- 1947 .. John P Stapp
- 1949: Sierra Sam
- 1966: VIP
- 1971: Hybrid I
- 1973: Hybrid II
- 1977: Hybrid III
- 1987: Hybrid III 5%
- ???: THOR?

Examples of current & future dummies

◆ SID2s: 5th percentile female

• BioRID: rear impact, whiplash

WorldSID 5% under development

 Child dummies Q6 & Q10 used by EuroNCAP (2015)

◆ THOR 50th & 5th percentile

Example – Dummy model

development Component third thorax rib inner sled test tests **Material** tests **Full scale tests Full dummy tests**

FAT Dummy development process

Dummy positioning

- Seat position
- H-Point Manikin
- Defined distances
- xyz-coordinates

"Climate room"

- Ensure right temperature
- Injury criteria can be temperature dependent
- Some criteria more sensitive than others

Available Dummy Models

- Frontal dummies
- Side impact dummies
- Rear impact dummies
- Child dummies
- Different sizes
- Variations (US Europe)

Future frontal dummy?

THOR: Test device for Human

Occupant Restraint

- Better biofidelity than Hybrid III
- 4 point thoracic injury evaluation
- Instrumented legs and face
- 5th percentile: under development
- Activities and plans to be used in Europe & US
- Development for 50th percentile is advanced

Simulation then and now

Simulation "yesterday":

- Coarse meshes, structure only
- Separate rigid body models
- No component models from suppliers
- "Nice to have", development relied on testing

 Detailed models (~ 6 million finite elements for fully integrated model)

"Not without" Major contribution in development

Simulation & testing organizational

- Testing & simulation work hand in hand
- Development engineers familiar with both areas
- Testing engineers can judge simulation results
- CAE-engineers are integrated in testing tasks
- Some areas "merged test & simulation", e.g. FMVSS201,
 Pedestrian safety, occupant safety
- Full scale vehicle & occupant simulation at OEM
- Sled test & simulation at OEM and system supplier
- ◆ Component test & simulation (airbags, trim ..) at supplier

Vehicle development process

- Typically 3-4 years
- Can be shorter for derivatives
- Little or no testing in digital prototype phase
- Early phase more simulation dominated, later phase more test dominated

Future test & simulation

- Test & Simulation work "hand in hand"
- Complementary use of test & simulation results
- Test of standard load case, Simulation of variations
- Passing of certain regulations through virtual testing (simulation)
- Simulation will not replace testing but gives additional answers

Will we still need all this in the future?

Thank you for your attention!

